基于自进化异构图学习的肽-微生物关联预测。

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Zhiyang Hu, Linqiang Pan, Daijun Zhang, Yannan Bin, Yansen Su
{"title":"基于自进化异构图学习的肽-微生物关联预测。","authors":"Zhiyang Hu, Linqiang Pan, Daijun Zhang, Yannan Bin, Yansen Su","doi":"10.1093/bib/bbaf334","DOIUrl":null,"url":null,"abstract":"<p><p>The inappropriate use of antibiotics has precipitated the emergence of multidrug-resistant bacteria, prompting significant interest in antimicrobial peptides (AMPs) as potential alternatives to traditional antibiotics. Given the prohibitive costs and time-consuming nature of biological experiments, computational methods provide an efficient alternative for the development of AMP-based drugs. However, existing computational studies primarily focus on identifying AMPs with antimicrobial activity, lacking a targeted identification of AMPs against specific microbial species. To address this gap, we propose a peptide-microbe association (PMA) prediction framework, termed AEPMA, which is constructed based on an autoevolutionary heterogeneous graph. Within AEPMA, we construct an innovative peptide-microbe-disease network (PMDHAN). Furthermore, we design an autoevolutionary information aggregation mechanism that facilitates the representation learning of the heterogeneous graph. This model automatically aggregates semantic information within the heterogeneous network while thoroughly accounting for the spatiotemporal dependencies and heterogeneous interactions in the PMDHAN. Experiments conducted on one peptide-microbe and three drug-microbe association datasets demonstrate that the performance of AEPMA outperforms five state-of-the-art methods, demonstrating its robust modeling capability and exceptional generalization ability. In addition, this study identifies a novel anti-Staphylococcus aureus peptide and an anti-Escherichia coli peptide, thereby contributing valuable information for the development of antimicrobial drugs and strategies for mitigating antibiotic resistance.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 4","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12240738/pdf/","citationCount":"0","resultStr":"{\"title\":\"AEPMA: peptide-microbe association prediction based on autoevolutionary heterogeneous graph learning.\",\"authors\":\"Zhiyang Hu, Linqiang Pan, Daijun Zhang, Yannan Bin, Yansen Su\",\"doi\":\"10.1093/bib/bbaf334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The inappropriate use of antibiotics has precipitated the emergence of multidrug-resistant bacteria, prompting significant interest in antimicrobial peptides (AMPs) as potential alternatives to traditional antibiotics. Given the prohibitive costs and time-consuming nature of biological experiments, computational methods provide an efficient alternative for the development of AMP-based drugs. However, existing computational studies primarily focus on identifying AMPs with antimicrobial activity, lacking a targeted identification of AMPs against specific microbial species. To address this gap, we propose a peptide-microbe association (PMA) prediction framework, termed AEPMA, which is constructed based on an autoevolutionary heterogeneous graph. Within AEPMA, we construct an innovative peptide-microbe-disease network (PMDHAN). Furthermore, we design an autoevolutionary information aggregation mechanism that facilitates the representation learning of the heterogeneous graph. This model automatically aggregates semantic information within the heterogeneous network while thoroughly accounting for the spatiotemporal dependencies and heterogeneous interactions in the PMDHAN. Experiments conducted on one peptide-microbe and three drug-microbe association datasets demonstrate that the performance of AEPMA outperforms five state-of-the-art methods, demonstrating its robust modeling capability and exceptional generalization ability. In addition, this study identifies a novel anti-Staphylococcus aureus peptide and an anti-Escherichia coli peptide, thereby contributing valuable information for the development of antimicrobial drugs and strategies for mitigating antibiotic resistance.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 4\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12240738/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf334\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf334","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

抗生素的不当使用加速了多重耐药细菌的出现,促使人们对抗菌肽(AMPs)作为传统抗生素的潜在替代品产生了极大的兴趣。鉴于生物实验的高昂成本和耗时性质,计算方法为开发基于amp的药物提供了一种有效的替代方法。然而,现有的计算研究主要集中在鉴定具有抗菌活性的抗菌肽上,缺乏针对特定微生物物种的抗菌肽的靶向鉴定。为了解决这一差距,我们提出了一个基于自进化异构图构建的肽-微生物关联(PMA)预测框架,称为AEPMA。在AEPMA内部,我们构建了一个创新的肽-微生物-疾病网络(PMDHAN)。此外,我们设计了一种自进化的信息聚合机制,促进了异构图的表示学习。该模型自动聚合异构网络中的语义信息,同时充分考虑PMDHAN中的时空依赖关系和异构交互。在一个肽-微生物和三个药物-微生物关联数据集上进行的实验表明,AEPMA的性能优于五种最先进的方法,展示了其强大的建模能力和卓越的泛化能力。此外,本研究还鉴定了一种新的抗金黄色葡萄球菌肽和一种抗大肠杆菌肽,从而为抗菌药物的开发和减轻抗生素耐药性的策略提供了有价值的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AEPMA: peptide-microbe association prediction based on autoevolutionary heterogeneous graph learning.

The inappropriate use of antibiotics has precipitated the emergence of multidrug-resistant bacteria, prompting significant interest in antimicrobial peptides (AMPs) as potential alternatives to traditional antibiotics. Given the prohibitive costs and time-consuming nature of biological experiments, computational methods provide an efficient alternative for the development of AMP-based drugs. However, existing computational studies primarily focus on identifying AMPs with antimicrobial activity, lacking a targeted identification of AMPs against specific microbial species. To address this gap, we propose a peptide-microbe association (PMA) prediction framework, termed AEPMA, which is constructed based on an autoevolutionary heterogeneous graph. Within AEPMA, we construct an innovative peptide-microbe-disease network (PMDHAN). Furthermore, we design an autoevolutionary information aggregation mechanism that facilitates the representation learning of the heterogeneous graph. This model automatically aggregates semantic information within the heterogeneous network while thoroughly accounting for the spatiotemporal dependencies and heterogeneous interactions in the PMDHAN. Experiments conducted on one peptide-microbe and three drug-microbe association datasets demonstrate that the performance of AEPMA outperforms five state-of-the-art methods, demonstrating its robust modeling capability and exceptional generalization ability. In addition, this study identifies a novel anti-Staphylococcus aureus peptide and an anti-Escherichia coli peptide, thereby contributing valuable information for the development of antimicrobial drugs and strategies for mitigating antibiotic resistance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信