基于bayesian优化的LSTM模型的电力市场日前负荷价格预测

Yomna Mohamed;Mostafa M. Fouda;Zubair Md Fadlullah;Rabab Abdelfattah;Mohamed I. Ibrahem
{"title":"基于bayesian优化的LSTM模型的电力市场日前负荷价格预测","authors":"Yomna Mohamed;Mostafa M. Fouda;Zubair Md Fadlullah;Rabab Abdelfattah;Mohamed I. Ibrahem","doi":"10.1109/OJCS.2025.3580107","DOIUrl":null,"url":null,"abstract":"Precise short-term load price forecasting is critical for uninterrupted and efficient powersystem operation and energymarket performance. Although machinelearning techniques have been widely employed to predict market prices, achieving reliable dayahead load price forecasts remains challenging in practice, especially in the Electric Reliability Council of Texas (ERCOT) energyonly market. This article targets sufficiently accurate dayahead load price prediction for ERCOT’s zonal markets by modeling historical load, price, and weather data with a Long ShortTerm Memory (LSTM) network whose hyperparameters are tuned via Bayesian Optimization (BO). The resulting BayesianOptimized LSTM for load price Prediction (BOLLPP) is evaluated against classical statistical and deeplearning baselines. On the Northzone test set, BOLLPP attains a Mean Absolute Error (MAE) of <inline-formula><tex-math>${\\$}$</tex-math></inline-formula>0.0044/MWh, cutting the MAE by 32% relative to the strongest deep baseline (BiLSTM, MAE of <inline-formula><tex-math>${\\$}$</tex-math></inline-formula>0.0065/MWh) and by over 99% compared with SARIMAX. Its MAE remains below <inline-formula><tex-math>${\\$}$</tex-math></inline-formula>0.006/MWh on the Coast and South zones, confirming robust generalization. These numerical results, along with the reported Mean Squared Error (MSE), and Mean Absolute Percentage Error (MAPE), validate the performance gains delivered by the proposed model. BOLLPP therefore promises markedly improved shortterm load price forecasts, supporting informed decisionmaking and enhanced operational efficiency in the ERCOT market.","PeriodicalId":13205,"journal":{"name":"IEEE Open Journal of the Computer Society","volume":"6 ","pages":"1001-1011"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11037549","citationCount":"0","resultStr":"{\"title\":\"BOL-LPP: A Bayesian-Optimized LSTM Model for Day-Ahead Load Price Forecasting in the ERCOT Market\",\"authors\":\"Yomna Mohamed;Mostafa M. Fouda;Zubair Md Fadlullah;Rabab Abdelfattah;Mohamed I. Ibrahem\",\"doi\":\"10.1109/OJCS.2025.3580107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Precise short-term load price forecasting is critical for uninterrupted and efficient powersystem operation and energymarket performance. Although machinelearning techniques have been widely employed to predict market prices, achieving reliable dayahead load price forecasts remains challenging in practice, especially in the Electric Reliability Council of Texas (ERCOT) energyonly market. This article targets sufficiently accurate dayahead load price prediction for ERCOT’s zonal markets by modeling historical load, price, and weather data with a Long ShortTerm Memory (LSTM) network whose hyperparameters are tuned via Bayesian Optimization (BO). The resulting BayesianOptimized LSTM for load price Prediction (BOLLPP) is evaluated against classical statistical and deeplearning baselines. On the Northzone test set, BOLLPP attains a Mean Absolute Error (MAE) of <inline-formula><tex-math>${\\\\$}$</tex-math></inline-formula>0.0044/MWh, cutting the MAE by 32% relative to the strongest deep baseline (BiLSTM, MAE of <inline-formula><tex-math>${\\\\$}$</tex-math></inline-formula>0.0065/MWh) and by over 99% compared with SARIMAX. Its MAE remains below <inline-formula><tex-math>${\\\\$}$</tex-math></inline-formula>0.006/MWh on the Coast and South zones, confirming robust generalization. These numerical results, along with the reported Mean Squared Error (MSE), and Mean Absolute Percentage Error (MAPE), validate the performance gains delivered by the proposed model. BOLLPP therefore promises markedly improved shortterm load price forecasts, supporting informed decisionmaking and enhanced operational efficiency in the ERCOT market.\",\"PeriodicalId\":13205,\"journal\":{\"name\":\"IEEE Open Journal of the Computer Society\",\"volume\":\"6 \",\"pages\":\"1001-1011\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11037549\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Computer Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11037549/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11037549/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准确的短期负荷价格预测对电力系统的不间断高效运行和能源市场表现至关重要。尽管机器学习技术已被广泛用于预测市场价格,但在实践中实现可靠的日前负荷价格预测仍然具有挑战性,特别是在德克萨斯州电力可靠性委员会(ERCOT)能源市场中。本文的目标是通过使用长短期记忆(LSTM)网络(其超参数通过贝叶斯优化(BO)进行调整)对历史负荷、价格和天气数据进行建模,为ERCOT区域市场提供足够准确的日前负荷价格预测。根据经典统计基线和深度学习基线对得到的用于负荷价格预测的贝叶斯优化LSTM (BOLLPP)进行了评估。在Northzone测试集上,BOLLPP的平均绝对误差(MAE)为${\$}$0.0044/MWh,相对于最强深度基线(BiLSTM, MAE为${\$}$0.0065/MWh)降低了32%,与SARIMAX相比降低了99%以上。在沿海和南部地区,其MAE仍低于${\$}$0.006/MWh,证实了稳健的泛化。这些数值结果,以及报告的均方误差(MSE)和平均绝对百分比误差(MAPE),验证了所建议模型提供的性能增益。因此,BOLLPP有望显著改善短期负荷价格预测,支持明智的决策,提高ERCOT市场的运营效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BOL-LPP: A Bayesian-Optimized LSTM Model for Day-Ahead Load Price Forecasting in the ERCOT Market
Precise short-term load price forecasting is critical for uninterrupted and efficient powersystem operation and energymarket performance. Although machinelearning techniques have been widely employed to predict market prices, achieving reliable dayahead load price forecasts remains challenging in practice, especially in the Electric Reliability Council of Texas (ERCOT) energyonly market. This article targets sufficiently accurate dayahead load price prediction for ERCOT’s zonal markets by modeling historical load, price, and weather data with a Long ShortTerm Memory (LSTM) network whose hyperparameters are tuned via Bayesian Optimization (BO). The resulting BayesianOptimized LSTM for load price Prediction (BOLLPP) is evaluated against classical statistical and deeplearning baselines. On the Northzone test set, BOLLPP attains a Mean Absolute Error (MAE) of ${\$}$0.0044/MWh, cutting the MAE by 32% relative to the strongest deep baseline (BiLSTM, MAE of ${\$}$0.0065/MWh) and by over 99% compared with SARIMAX. Its MAE remains below ${\$}$0.006/MWh on the Coast and South zones, confirming robust generalization. These numerical results, along with the reported Mean Squared Error (MSE), and Mean Absolute Percentage Error (MAPE), validate the performance gains delivered by the proposed model. BOLLPP therefore promises markedly improved shortterm load price forecasts, supporting informed decisionmaking and enhanced operational efficiency in the ERCOT market.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信