SiC MOSFET模块温度自适应有源栅极驱动器的原理与实现

Q1 Engineering
Menghao Li;Hao Li;Jie Ren;Sideng Hu;Xiangning He
{"title":"SiC MOSFET模块温度自适应有源栅极驱动器的原理与实现","authors":"Menghao Li;Hao Li;Jie Ren;Sideng Hu;Xiangning He","doi":"10.23919/CJEE.2025.000140","DOIUrl":null,"url":null,"abstract":"By integrating a temperature-adaptive function, an active gate driver (AGD) enhances the switching performance of silicon carbide (SiC) MOSFETs under varying temperature conditions. However, the lack of analytical expressions describing the coupling between AGD parameters and temperature variation limits the broader application of this method, particularly in SiC modules that exhibit complicated device transient behaviors. To address this challenge, a mathematical model of the transient behavior of an SiC module is developed to investigate the relationship among AGD parameters, junction temperature, and switching performance. The analysis reveals that the impact of temperature on switching performance is directly linked to the duration of each gate resistance. Accordingly, a temperature-adaptive AGD for SiC MOSFET modules is proposed. Online junction temperature monitoring is achieved using turn-on delay detection, and the duration of each gate's driving resistance is dynamically adjusted. The proposed temperature-adaptive AGD is validated experimentally using a commercial 1.2 kV/560 A SiC MOSFET at 600 V/200 A. Experimental results across a temperature range of 20°C to 100°C demonstrate that electrical stress variation remains within 15%, while loss variation does not exceed 10%.","PeriodicalId":36428,"journal":{"name":"Chinese Journal of Electrical Engineering","volume":"11 2","pages":"216-225"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11077900","citationCount":"0","resultStr":"{\"title\":\"Principle and Implementation of Temperature-Adaptive Active Gate Driver for SiC MOSFET Module\",\"authors\":\"Menghao Li;Hao Li;Jie Ren;Sideng Hu;Xiangning He\",\"doi\":\"10.23919/CJEE.2025.000140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By integrating a temperature-adaptive function, an active gate driver (AGD) enhances the switching performance of silicon carbide (SiC) MOSFETs under varying temperature conditions. However, the lack of analytical expressions describing the coupling between AGD parameters and temperature variation limits the broader application of this method, particularly in SiC modules that exhibit complicated device transient behaviors. To address this challenge, a mathematical model of the transient behavior of an SiC module is developed to investigate the relationship among AGD parameters, junction temperature, and switching performance. The analysis reveals that the impact of temperature on switching performance is directly linked to the duration of each gate resistance. Accordingly, a temperature-adaptive AGD for SiC MOSFET modules is proposed. Online junction temperature monitoring is achieved using turn-on delay detection, and the duration of each gate's driving resistance is dynamically adjusted. The proposed temperature-adaptive AGD is validated experimentally using a commercial 1.2 kV/560 A SiC MOSFET at 600 V/200 A. Experimental results across a temperature range of 20°C to 100°C demonstrate that electrical stress variation remains within 15%, while loss variation does not exceed 10%.\",\"PeriodicalId\":36428,\"journal\":{\"name\":\"Chinese Journal of Electrical Engineering\",\"volume\":\"11 2\",\"pages\":\"216-225\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11077900\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Electrical Engineering\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11077900/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electrical Engineering","FirstCategoryId":"1087","ListUrlMain":"https://ieeexplore.ieee.org/document/11077900/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

通过集成温度自适应功能,有源栅极驱动器(AGD)提高了碳化硅(SiC) mosfet在不同温度条件下的开关性能。然而,缺乏描述AGD参数与温度变化之间耦合的解析表达式限制了该方法的广泛应用,特别是在具有复杂器件瞬态行为的SiC模块中。为了解决这一挑战,开发了SiC模块瞬态行为的数学模型,以研究AGD参数,结温和开关性能之间的关系。分析表明,温度对开关性能的影响与每个栅极电阻的持续时间直接相关。据此,提出了一种用于SiC MOSFET模块的温度自适应AGD。采用导通延时检测实现结温在线监测,并动态调节各栅极驱动电阻持续时间。采用商用1.2 kV/ 560a SiC MOSFET在600 V/200 a下进行了温度自适应AGD的实验验证。在20 ~ 100℃温度范围内的实验结果表明,电应力变化保持在15%以内,而损耗变化不超过10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Principle and Implementation of Temperature-Adaptive Active Gate Driver for SiC MOSFET Module
By integrating a temperature-adaptive function, an active gate driver (AGD) enhances the switching performance of silicon carbide (SiC) MOSFETs under varying temperature conditions. However, the lack of analytical expressions describing the coupling between AGD parameters and temperature variation limits the broader application of this method, particularly in SiC modules that exhibit complicated device transient behaviors. To address this challenge, a mathematical model of the transient behavior of an SiC module is developed to investigate the relationship among AGD parameters, junction temperature, and switching performance. The analysis reveals that the impact of temperature on switching performance is directly linked to the duration of each gate resistance. Accordingly, a temperature-adaptive AGD for SiC MOSFET modules is proposed. Online junction temperature monitoring is achieved using turn-on delay detection, and the duration of each gate's driving resistance is dynamically adjusted. The proposed temperature-adaptive AGD is validated experimentally using a commercial 1.2 kV/560 A SiC MOSFET at 600 V/200 A. Experimental results across a temperature range of 20°C to 100°C demonstrate that electrical stress variation remains within 15%, while loss variation does not exceed 10%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Electrical Engineering
Chinese Journal of Electrical Engineering Energy-Energy Engineering and Power Technology
CiteScore
7.80
自引率
0.00%
发文量
621
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信