Faqian Guan;Tianqing Zhu;Hui Sun;Wanlei Zhou;Philip S. Yu
{"title":"面向图神经网络的链接窃取攻击的大型语言模型","authors":"Faqian Guan;Tianqing Zhu;Hui Sun;Wanlei Zhou;Philip S. Yu","doi":"10.1109/TBDATA.2024.3489427","DOIUrl":null,"url":null,"abstract":"Graph data contains rich node features and unique edge information, which have been applied across various domains, such as citation networks or recommendation systems. Graph Neural Networks (GNNs) are specialized for handling such data and have shown impressive performance in many applications. However, GNNs may contain of sensitive information and susceptible to privacy attacks. For example, link stealing is a type of attack in which attackers infer whether two nodes are linked or not. Previous link stealing attacks primarily relied on posterior probabilities from the target GNN model, neglecting the significance of node features. Additionally, variations in node classes across different datasets lead to different dimensions of posterior probabilities. The handling of these varying data dimensions posed a challenge in using a single model to effectively conduct link stealing attacks on different datasets. To address these challenges, we introduce Large Language Models (LLMs) to perform link stealing attacks on GNNs. LLMs can effectively integrate textual features and exhibit strong generalizability, enabling attacks to handle diverse data dimensions across various datasets. We design two distinct LLM prompts to effectively combine textual features and posterior probabilities of graph nodes. Through these designed prompts, we fine-tune the LLM to adapt to the link stealing attack task. Furthermore, we fine-tune the LLM using multiple datasets and enable the LLM to learn features from different datasets simultaneously. Experimental results show that our approach significantly enhances the performance of existing link stealing attack tasks in both white-box and black-box scenarios. Our method can execute link stealing attacks across different datasets using only a single model, making link stealing attacks more applicable to real-world scenarios.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"11 4","pages":"1879-1893"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large Language Models for Link Stealing Attacks Against Graph Neural Networks\",\"authors\":\"Faqian Guan;Tianqing Zhu;Hui Sun;Wanlei Zhou;Philip S. Yu\",\"doi\":\"10.1109/TBDATA.2024.3489427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph data contains rich node features and unique edge information, which have been applied across various domains, such as citation networks or recommendation systems. Graph Neural Networks (GNNs) are specialized for handling such data and have shown impressive performance in many applications. However, GNNs may contain of sensitive information and susceptible to privacy attacks. For example, link stealing is a type of attack in which attackers infer whether two nodes are linked or not. Previous link stealing attacks primarily relied on posterior probabilities from the target GNN model, neglecting the significance of node features. Additionally, variations in node classes across different datasets lead to different dimensions of posterior probabilities. The handling of these varying data dimensions posed a challenge in using a single model to effectively conduct link stealing attacks on different datasets. To address these challenges, we introduce Large Language Models (LLMs) to perform link stealing attacks on GNNs. LLMs can effectively integrate textual features and exhibit strong generalizability, enabling attacks to handle diverse data dimensions across various datasets. We design two distinct LLM prompts to effectively combine textual features and posterior probabilities of graph nodes. Through these designed prompts, we fine-tune the LLM to adapt to the link stealing attack task. Furthermore, we fine-tune the LLM using multiple datasets and enable the LLM to learn features from different datasets simultaneously. Experimental results show that our approach significantly enhances the performance of existing link stealing attack tasks in both white-box and black-box scenarios. Our method can execute link stealing attacks across different datasets using only a single model, making link stealing attacks more applicable to real-world scenarios.\",\"PeriodicalId\":13106,\"journal\":{\"name\":\"IEEE Transactions on Big Data\",\"volume\":\"11 4\",\"pages\":\"1879-1893\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10747296/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10747296/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Large Language Models for Link Stealing Attacks Against Graph Neural Networks
Graph data contains rich node features and unique edge information, which have been applied across various domains, such as citation networks or recommendation systems. Graph Neural Networks (GNNs) are specialized for handling such data and have shown impressive performance in many applications. However, GNNs may contain of sensitive information and susceptible to privacy attacks. For example, link stealing is a type of attack in which attackers infer whether two nodes are linked or not. Previous link stealing attacks primarily relied on posterior probabilities from the target GNN model, neglecting the significance of node features. Additionally, variations in node classes across different datasets lead to different dimensions of posterior probabilities. The handling of these varying data dimensions posed a challenge in using a single model to effectively conduct link stealing attacks on different datasets. To address these challenges, we introduce Large Language Models (LLMs) to perform link stealing attacks on GNNs. LLMs can effectively integrate textual features and exhibit strong generalizability, enabling attacks to handle diverse data dimensions across various datasets. We design two distinct LLM prompts to effectively combine textual features and posterior probabilities of graph nodes. Through these designed prompts, we fine-tune the LLM to adapt to the link stealing attack task. Furthermore, we fine-tune the LLM using multiple datasets and enable the LLM to learn features from different datasets simultaneously. Experimental results show that our approach significantly enhances the performance of existing link stealing attack tasks in both white-box and black-box scenarios. Our method can execute link stealing attacks across different datasets using only a single model, making link stealing attacks more applicable to real-world scenarios.
期刊介绍:
The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.