基于图神经网络的时态知识图的复杂逻辑查询

IF 5.7 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Luyi Bai;Linshuo Xu;Lin Zhu
{"title":"基于图神经网络的时态知识图的复杂逻辑查询","authors":"Luyi Bai;Linshuo Xu;Lin Zhu","doi":"10.1109/TBDATA.2024.3489421","DOIUrl":null,"url":null,"abstract":"Answering complex logical queries on large-scale Knowledge Graphs (KGs) efficiently and accurately has always been crucial for question-answering systems. Recent studies have significantly improved the performance of complex logical queries on massive knowledge graphs by leveraging graph neural networks (GNNs). However, the existing GNN-based methods still have limitations in dealing with long-sequence logical queries. They usually decompose complex queries into multiple independent first-order logical queries, which leads to the inability to optimize globally, and the query accuracy will drop sharply with the increase of query length. In addition, the knowlege in the real world is dynamically changing, but most of the existing methods are more suitable for dealing with static knowledge graphs, and there is still much room for improvement when dealing with logical queries in temporal knowledge graphs. In this paper, we propose a novel Temporal Complex Logical Query (TCLQ) model to achieve temporal logical queries on temporal knowledge graphs. We add time series embedding into GNN, and use multi-layer GRUs to aggregate the node features of previous time and current time, which effectively enhances the time series reasoning ability of the model. In order to solve the problem that the accuracy of logical query model decreases significantly with the increase of query sequence length, we establish a multi-level attention coefficients model to learn and optimize the whole logical queries, thus reducing the error accumulation problem when the queries are decomposed into multiple independent first-order logical queries. We conduct experiments on multiple temporal datasets and demonstrate the effectiveness of TCLQ.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"11 4","pages":"1828-1839"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attention-Based Complex Logical Query on Temporal Knowledge Graph via Graph Neural Network\",\"authors\":\"Luyi Bai;Linshuo Xu;Lin Zhu\",\"doi\":\"10.1109/TBDATA.2024.3489421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Answering complex logical queries on large-scale Knowledge Graphs (KGs) efficiently and accurately has always been crucial for question-answering systems. Recent studies have significantly improved the performance of complex logical queries on massive knowledge graphs by leveraging graph neural networks (GNNs). However, the existing GNN-based methods still have limitations in dealing with long-sequence logical queries. They usually decompose complex queries into multiple independent first-order logical queries, which leads to the inability to optimize globally, and the query accuracy will drop sharply with the increase of query length. In addition, the knowlege in the real world is dynamically changing, but most of the existing methods are more suitable for dealing with static knowledge graphs, and there is still much room for improvement when dealing with logical queries in temporal knowledge graphs. In this paper, we propose a novel Temporal Complex Logical Query (TCLQ) model to achieve temporal logical queries on temporal knowledge graphs. We add time series embedding into GNN, and use multi-layer GRUs to aggregate the node features of previous time and current time, which effectively enhances the time series reasoning ability of the model. In order to solve the problem that the accuracy of logical query model decreases significantly with the increase of query sequence length, we establish a multi-level attention coefficients model to learn and optimize the whole logical queries, thus reducing the error accumulation problem when the queries are decomposed into multiple independent first-order logical queries. We conduct experiments on multiple temporal datasets and demonstrate the effectiveness of TCLQ.\",\"PeriodicalId\":13106,\"journal\":{\"name\":\"IEEE Transactions on Big Data\",\"volume\":\"11 4\",\"pages\":\"1828-1839\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10740050/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10740050/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

高效、准确地回答大规模知识图(KGs)上的复杂逻辑查询一直是问答系统的关键。近年来的研究利用图神经网络(gnn)显著提高了海量知识图上复杂逻辑查询的性能。然而,现有的基于gnn的方法在处理长序列逻辑查询方面仍然存在局限性。它们通常将复杂查询分解为多个独立的一阶逻辑查询,导致无法进行全局优化,并且随着查询长度的增加,查询精度会急剧下降。此外,现实世界中的知识是动态变化的,但现有的方法大多更适合于处理静态知识图,而处理时态知识图中的逻辑查询还有很大的改进空间。在本文中,我们提出了一种新的时间复杂逻辑查询(TCLQ)模型来实现对时间知识图的时间逻辑查询。我们将时间序列嵌入到GNN中,利用多层gru对前一时刻和当前时刻的节点特征进行聚合,有效增强了模型的时间序列推理能力。为了解决逻辑查询模型的准确性随着查询序列长度的增加而显著下降的问题,我们建立了一个多级注意系数模型来学习和优化整个逻辑查询,从而减少了将查询分解为多个独立的一阶逻辑查询时的错误积累问题。我们在多个时间数据集上进行了实验,验证了TCLQ的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Attention-Based Complex Logical Query on Temporal Knowledge Graph via Graph Neural Network
Answering complex logical queries on large-scale Knowledge Graphs (KGs) efficiently and accurately has always been crucial for question-answering systems. Recent studies have significantly improved the performance of complex logical queries on massive knowledge graphs by leveraging graph neural networks (GNNs). However, the existing GNN-based methods still have limitations in dealing with long-sequence logical queries. They usually decompose complex queries into multiple independent first-order logical queries, which leads to the inability to optimize globally, and the query accuracy will drop sharply with the increase of query length. In addition, the knowlege in the real world is dynamically changing, but most of the existing methods are more suitable for dealing with static knowledge graphs, and there is still much room for improvement when dealing with logical queries in temporal knowledge graphs. In this paper, we propose a novel Temporal Complex Logical Query (TCLQ) model to achieve temporal logical queries on temporal knowledge graphs. We add time series embedding into GNN, and use multi-layer GRUs to aggregate the node features of previous time and current time, which effectively enhances the time series reasoning ability of the model. In order to solve the problem that the accuracy of logical query model decreases significantly with the increase of query sequence length, we establish a multi-level attention coefficients model to learn and optimize the whole logical queries, thus reducing the error accumulation problem when the queries are decomposed into multiple independent first-order logical queries. We conduct experiments on multiple temporal datasets and demonstrate the effectiveness of TCLQ.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.80
自引率
2.80%
发文量
114
期刊介绍: The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信