私有和有用的1:M微数据的增强和健壮的数据发布方案

IF 5.7 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Muhammad Rizwan;Ammar Hawbani;Xingfu Wang;Adeel Anjum;Pelin Angin;Yigit Sever;Sanchuan Chen;Liang Zhao;Ahmed Al-Dubai
{"title":"私有和有用的1:M微数据的增强和健壮的数据发布方案","authors":"Muhammad Rizwan;Ammar Hawbani;Xingfu Wang;Adeel Anjum;Pelin Angin;Yigit Sever;Sanchuan Chen;Liang Zhao;Ahmed Al-Dubai","doi":"10.1109/TBDATA.2024.3495497","DOIUrl":null,"url":null,"abstract":"A data publishing deal conducted with anonymous microdata can preserve the privacy of people. However, anonymizing data with multiple records of an individual (1:M dataset) is still a challenging problem. After anonymizing the 1:M microdata, the vertical correlation can be exploited to launch privacy attacks. In this paper, a novel privacy preserving model <inline-formula><tex-math>$l_{c}, l_{s}$</tex-math></inline-formula>-ANGEL is proposed. To validate the new model, two privacy attacks are presented, namely, a Vertical correlation attack (<inline-formula><tex-math>$V_{c0}$</tex-math></inline-formula>) and a Vulnerable sensitive attribute attack (<inline-formula><tex-math>$V_{sa}$</tex-math></inline-formula>) on 1:M datasets, which breach the privacy of individuals. Furthermore, the proposed model is examined through High-Level Petri Nets (HLPNs). Our experiments on three real-world datasets;“INFORMS”,“YOUTUBE”, and “IMDb” demonstrate that the proposed model outperforms the state-of-the-art models. Our practices and lessons learned in this work can direct future concrete steps towards Multiple Sensitive Attributes, where we can expand the proposed model to dynamic datasets.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"11 4","pages":"1932-1944"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Enhanced and Robust Data Publishing Scheme for Private and Useful 1:M Microdata\",\"authors\":\"Muhammad Rizwan;Ammar Hawbani;Xingfu Wang;Adeel Anjum;Pelin Angin;Yigit Sever;Sanchuan Chen;Liang Zhao;Ahmed Al-Dubai\",\"doi\":\"10.1109/TBDATA.2024.3495497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A data publishing deal conducted with anonymous microdata can preserve the privacy of people. However, anonymizing data with multiple records of an individual (1:M dataset) is still a challenging problem. After anonymizing the 1:M microdata, the vertical correlation can be exploited to launch privacy attacks. In this paper, a novel privacy preserving model <inline-formula><tex-math>$l_{c}, l_{s}$</tex-math></inline-formula>-ANGEL is proposed. To validate the new model, two privacy attacks are presented, namely, a Vertical correlation attack (<inline-formula><tex-math>$V_{c0}$</tex-math></inline-formula>) and a Vulnerable sensitive attribute attack (<inline-formula><tex-math>$V_{sa}$</tex-math></inline-formula>) on 1:M datasets, which breach the privacy of individuals. Furthermore, the proposed model is examined through High-Level Petri Nets (HLPNs). Our experiments on three real-world datasets;“INFORMS”,“YOUTUBE”, and “IMDb” demonstrate that the proposed model outperforms the state-of-the-art models. Our practices and lessons learned in this work can direct future concrete steps towards Multiple Sensitive Attributes, where we can expand the proposed model to dynamic datasets.\",\"PeriodicalId\":13106,\"journal\":{\"name\":\"IEEE Transactions on Big Data\",\"volume\":\"11 4\",\"pages\":\"1932-1944\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10748377/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10748377/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

通过匿名微数据进行的数据发布交易可以保护人们的隐私。然而,匿名化具有多个个人记录的数据(1:M数据集)仍然是一个具有挑战性的问题。在对1:M微数据进行匿名化后,可以利用垂直相关性发起隐私攻击。本文提出了一种新的隐私保护模型$l_{c}, $l_{s} -ANGEL。为了验证新模型的有效性,提出了两种侵犯个人隐私的隐私攻击,分别是针对1:M个数据集的垂直相关攻击($V_{c0}$)和脆弱敏感属性攻击($V_{sa}$)。此外,通过高级Petri网(HLPNs)对所提出的模型进行了检验。我们在“INFORMS”、“YOUTUBE”和“IMDb”三个真实数据集上的实验表明,所提出的模型优于最先进的模型。我们在这项工作中的实践和经验教训可以指导未来朝着多敏感属性的具体步骤,在那里我们可以将所提出的模型扩展到动态数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Enhanced and Robust Data Publishing Scheme for Private and Useful 1:M Microdata
A data publishing deal conducted with anonymous microdata can preserve the privacy of people. However, anonymizing data with multiple records of an individual (1:M dataset) is still a challenging problem. After anonymizing the 1:M microdata, the vertical correlation can be exploited to launch privacy attacks. In this paper, a novel privacy preserving model $l_{c}, l_{s}$-ANGEL is proposed. To validate the new model, two privacy attacks are presented, namely, a Vertical correlation attack ($V_{c0}$) and a Vulnerable sensitive attribute attack ($V_{sa}$) on 1:M datasets, which breach the privacy of individuals. Furthermore, the proposed model is examined through High-Level Petri Nets (HLPNs). Our experiments on three real-world datasets;“INFORMS”,“YOUTUBE”, and “IMDb” demonstrate that the proposed model outperforms the state-of-the-art models. Our practices and lessons learned in this work can direct future concrete steps towards Multiple Sensitive Attributes, where we can expand the proposed model to dynamic datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.80
自引率
2.80%
发文量
114
期刊介绍: The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信