Kirsten Brooksbank , Charlotte Smith , Eleni Maniati , Amy Gibson , Wai Yiu Tse , Amy Kate Hall , Jun Wang , Tyson V Sharp , Sarah A Martin
{"title":"DNA错配修复蛋白MSH6是一种新的PD-L1表达调节因子","authors":"Kirsten Brooksbank , Charlotte Smith , Eleni Maniati , Amy Gibson , Wai Yiu Tse , Amy Kate Hall , Jun Wang , Tyson V Sharp , Sarah A Martin","doi":"10.1016/j.neo.2025.101207","DOIUrl":null,"url":null,"abstract":"<div><div>Immune checkpoint inhibitors (ICIs) are extremely effective in a subgroup of mismatch repair-deficient (MMRd) cancers, but ∼50% remain resistant to treatment. We have shown for the first time that this may be due to the differential regulation of factors linked to response to ICIs upon loss of the different MMR genes. Here, we show that increased PD-L1 expression is observed upon loss of the MMR genes MLH1, MSH2 and PMS2. However, this is not true upon loss of MSH6, and we show that this is due to a novel role for MSH6 as a direct regulator of PD-L1 transcription, dependent on recruitment by the histone trimethyltransferase SETD2. Next-generation sequencing of MLH1 and MSH6 knockout (KO) cells revealed that MSH6 KO cells have significantly lower microsatellite instability in comparison to MLH1 KO cells, despite MSH6 KO cells having a higher mutational burden. These findings emphasise the need for gene-specific stratification in the MMRd cohort.</div></div>","PeriodicalId":18917,"journal":{"name":"Neoplasia","volume":"67 ","pages":"Article 101207"},"PeriodicalIF":4.8000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The DNA mismatch repair protein, MSH6 is a novel regulator of PD-L1 expression\",\"authors\":\"Kirsten Brooksbank , Charlotte Smith , Eleni Maniati , Amy Gibson , Wai Yiu Tse , Amy Kate Hall , Jun Wang , Tyson V Sharp , Sarah A Martin\",\"doi\":\"10.1016/j.neo.2025.101207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Immune checkpoint inhibitors (ICIs) are extremely effective in a subgroup of mismatch repair-deficient (MMRd) cancers, but ∼50% remain resistant to treatment. We have shown for the first time that this may be due to the differential regulation of factors linked to response to ICIs upon loss of the different MMR genes. Here, we show that increased PD-L1 expression is observed upon loss of the MMR genes MLH1, MSH2 and PMS2. However, this is not true upon loss of MSH6, and we show that this is due to a novel role for MSH6 as a direct regulator of PD-L1 transcription, dependent on recruitment by the histone trimethyltransferase SETD2. Next-generation sequencing of MLH1 and MSH6 knockout (KO) cells revealed that MSH6 KO cells have significantly lower microsatellite instability in comparison to MLH1 KO cells, despite MSH6 KO cells having a higher mutational burden. These findings emphasise the need for gene-specific stratification in the MMRd cohort.</div></div>\",\"PeriodicalId\":18917,\"journal\":{\"name\":\"Neoplasia\",\"volume\":\"67 \",\"pages\":\"Article 101207\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neoplasia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1476558625000879\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neoplasia","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476558625000879","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
The DNA mismatch repair protein, MSH6 is a novel regulator of PD-L1 expression
Immune checkpoint inhibitors (ICIs) are extremely effective in a subgroup of mismatch repair-deficient (MMRd) cancers, but ∼50% remain resistant to treatment. We have shown for the first time that this may be due to the differential regulation of factors linked to response to ICIs upon loss of the different MMR genes. Here, we show that increased PD-L1 expression is observed upon loss of the MMR genes MLH1, MSH2 and PMS2. However, this is not true upon loss of MSH6, and we show that this is due to a novel role for MSH6 as a direct regulator of PD-L1 transcription, dependent on recruitment by the histone trimethyltransferase SETD2. Next-generation sequencing of MLH1 and MSH6 knockout (KO) cells revealed that MSH6 KO cells have significantly lower microsatellite instability in comparison to MLH1 KO cells, despite MSH6 KO cells having a higher mutational burden. These findings emphasise the need for gene-specific stratification in the MMRd cohort.
期刊介绍:
Neoplasia publishes the results of novel investigations in all areas of oncology research. The title Neoplasia was chosen to convey the journal’s breadth, which encompasses the traditional disciplines of cancer research as well as emerging fields and interdisciplinary investigations. Neoplasia is interested in studies describing new molecular and genetic findings relating to the neoplastic phenotype and in laboratory and clinical studies demonstrating creative applications of advances in the basic sciences to risk assessment, prognostic indications, detection, diagnosis, and treatment. In addition to regular Research Reports, Neoplasia also publishes Reviews and Meeting Reports. Neoplasia is committed to ensuring a thorough, fair, and rapid review and publication schedule to further its mission of serving both the scientific and clinical communities by disseminating important data and ideas in cancer research.