广义分数匹配

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Jiazhen Xu, Janice L. Scealy, Andrew T.A. Wood, Tao Zou
{"title":"广义分数匹配","authors":"Jiazhen Xu,&nbsp;Janice L. Scealy,&nbsp;Andrew T.A. Wood,&nbsp;Tao Zou","doi":"10.1016/j.jmva.2025.105473","DOIUrl":null,"url":null,"abstract":"<div><div>Score matching is an estimation procedure that has been developed for statistical models whose probability density function or probability mass function is known up to proportionality but whose normalizing constant is intractable, so that maximum likelihood is difficult or impossible to implement. To date, applications of score matching have focused more on continuous IID models. Motivated by various data modeling problems, this article proposes a unified asymptotic theory of generalized score matching developed under the independence assumption, covering both continuous and discrete response data, thereby giving a sound basis for score-matching-based inference. Real data analyses and simulation studies provide convincing evidence of strong practical performance of the proposed methods.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"210 ","pages":"Article 105473"},"PeriodicalIF":1.4000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized score matching\",\"authors\":\"Jiazhen Xu,&nbsp;Janice L. Scealy,&nbsp;Andrew T.A. Wood,&nbsp;Tao Zou\",\"doi\":\"10.1016/j.jmva.2025.105473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Score matching is an estimation procedure that has been developed for statistical models whose probability density function or probability mass function is known up to proportionality but whose normalizing constant is intractable, so that maximum likelihood is difficult or impossible to implement. To date, applications of score matching have focused more on continuous IID models. Motivated by various data modeling problems, this article proposes a unified asymptotic theory of generalized score matching developed under the independence assumption, covering both continuous and discrete response data, thereby giving a sound basis for score-matching-based inference. Real data analyses and simulation studies provide convincing evidence of strong practical performance of the proposed methods.</div></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":\"210 \",\"pages\":\"Article 105473\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X25000685\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X25000685","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

分数匹配是针对概率密度函数或概率质量函数达到比例已知但归一化常数难以处理的统计模型而开发的一种估计过程,因此最大似然难以实现或不可能实现。迄今为止,分数匹配的应用更多地集中在连续IID模型上。在各种数据建模问题的激励下,本文提出了在独立性假设下发展的统一的广义分数匹配渐近理论,涵盖了连续和离散的响应数据,从而为基于分数匹配的推理提供了良好的基础。实际数据分析和仿真研究提供了令人信服的证据,证明所提出的方法具有较强的实用性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized score matching
Score matching is an estimation procedure that has been developed for statistical models whose probability density function or probability mass function is known up to proportionality but whose normalizing constant is intractable, so that maximum likelihood is difficult or impossible to implement. To date, applications of score matching have focused more on continuous IID models. Motivated by various data modeling problems, this article proposes a unified asymptotic theory of generalized score matching developed under the independence assumption, covering both continuous and discrete response data, thereby giving a sound basis for score-matching-based inference. Real data analyses and simulation studies provide convincing evidence of strong practical performance of the proposed methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信