Lei Xin , Baike She , Qi Dou , George T.-C. Chiu , Shreyas Sundaram
{"title":"在有限数据的初始化约束下学习非线性系统的线性化模型","authors":"Lei Xin , Baike She , Qi Dou , George T.-C. Chiu , Shreyas Sundaram","doi":"10.1016/j.automatica.2025.112478","DOIUrl":null,"url":null,"abstract":"<div><div>The identification of a linear system model from data has wide applications in control theory. The existing work that provides finite sample guarantees for linear system identification typically uses data from a single long system trajectory under i.i.d. random inputs, and assumes that the underlying dynamics is truly linear. In contrast, we consider the problem of identifying a linearized model when the true underlying dynamics is nonlinear, given that there is a certain constraint on the region where one can initialize the experiments. We provide a multiple trajectories-based deterministic data acquisition algorithm followed by a regularized least squares algorithm, and provide a finite sample error bound on the learned linearized dynamics. Our error bound shows that one can consistently learn the linearized dynamics, and demonstrates a trade-off between the error due to nonlinearity and the error due to noise. We validate our results through numerical experiments, where we also show the potential insufficiency of linear system identification using a single trajectory with i.i.d. random inputs, when nonlinearity does exist.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"180 ","pages":"Article 112478"},"PeriodicalIF":4.8000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning linearized models from nonlinear systems under initialization constraints with finite data\",\"authors\":\"Lei Xin , Baike She , Qi Dou , George T.-C. Chiu , Shreyas Sundaram\",\"doi\":\"10.1016/j.automatica.2025.112478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The identification of a linear system model from data has wide applications in control theory. The existing work that provides finite sample guarantees for linear system identification typically uses data from a single long system trajectory under i.i.d. random inputs, and assumes that the underlying dynamics is truly linear. In contrast, we consider the problem of identifying a linearized model when the true underlying dynamics is nonlinear, given that there is a certain constraint on the region where one can initialize the experiments. We provide a multiple trajectories-based deterministic data acquisition algorithm followed by a regularized least squares algorithm, and provide a finite sample error bound on the learned linearized dynamics. Our error bound shows that one can consistently learn the linearized dynamics, and demonstrates a trade-off between the error due to nonlinearity and the error due to noise. We validate our results through numerical experiments, where we also show the potential insufficiency of linear system identification using a single trajectory with i.i.d. random inputs, when nonlinearity does exist.</div></div>\",\"PeriodicalId\":55413,\"journal\":{\"name\":\"Automatica\",\"volume\":\"180 \",\"pages\":\"Article 112478\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automatica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0005109825003735\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005109825003735","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Learning linearized models from nonlinear systems under initialization constraints with finite data
The identification of a linear system model from data has wide applications in control theory. The existing work that provides finite sample guarantees for linear system identification typically uses data from a single long system trajectory under i.i.d. random inputs, and assumes that the underlying dynamics is truly linear. In contrast, we consider the problem of identifying a linearized model when the true underlying dynamics is nonlinear, given that there is a certain constraint on the region where one can initialize the experiments. We provide a multiple trajectories-based deterministic data acquisition algorithm followed by a regularized least squares algorithm, and provide a finite sample error bound on the learned linearized dynamics. Our error bound shows that one can consistently learn the linearized dynamics, and demonstrates a trade-off between the error due to nonlinearity and the error due to noise. We validate our results through numerical experiments, where we also show the potential insufficiency of linear system identification using a single trajectory with i.i.d. random inputs, when nonlinearity does exist.
期刊介绍:
Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field.
After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience.
Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.