在有限数据的初始化约束下学习非线性系统的线性化模型

IF 4.8 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Lei Xin , Baike She , Qi Dou , George T.-C. Chiu , Shreyas Sundaram
{"title":"在有限数据的初始化约束下学习非线性系统的线性化模型","authors":"Lei Xin ,&nbsp;Baike She ,&nbsp;Qi Dou ,&nbsp;George T.-C. Chiu ,&nbsp;Shreyas Sundaram","doi":"10.1016/j.automatica.2025.112478","DOIUrl":null,"url":null,"abstract":"<div><div>The identification of a linear system model from data has wide applications in control theory. The existing work that provides finite sample guarantees for linear system identification typically uses data from a single long system trajectory under i.i.d. random inputs, and assumes that the underlying dynamics is truly linear. In contrast, we consider the problem of identifying a linearized model when the true underlying dynamics is nonlinear, given that there is a certain constraint on the region where one can initialize the experiments. We provide a multiple trajectories-based deterministic data acquisition algorithm followed by a regularized least squares algorithm, and provide a finite sample error bound on the learned linearized dynamics. Our error bound shows that one can consistently learn the linearized dynamics, and demonstrates a trade-off between the error due to nonlinearity and the error due to noise. We validate our results through numerical experiments, where we also show the potential insufficiency of linear system identification using a single trajectory with i.i.d. random inputs, when nonlinearity does exist.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"180 ","pages":"Article 112478"},"PeriodicalIF":4.8000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning linearized models from nonlinear systems under initialization constraints with finite data\",\"authors\":\"Lei Xin ,&nbsp;Baike She ,&nbsp;Qi Dou ,&nbsp;George T.-C. Chiu ,&nbsp;Shreyas Sundaram\",\"doi\":\"10.1016/j.automatica.2025.112478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The identification of a linear system model from data has wide applications in control theory. The existing work that provides finite sample guarantees for linear system identification typically uses data from a single long system trajectory under i.i.d. random inputs, and assumes that the underlying dynamics is truly linear. In contrast, we consider the problem of identifying a linearized model when the true underlying dynamics is nonlinear, given that there is a certain constraint on the region where one can initialize the experiments. We provide a multiple trajectories-based deterministic data acquisition algorithm followed by a regularized least squares algorithm, and provide a finite sample error bound on the learned linearized dynamics. Our error bound shows that one can consistently learn the linearized dynamics, and demonstrates a trade-off between the error due to nonlinearity and the error due to noise. We validate our results through numerical experiments, where we also show the potential insufficiency of linear system identification using a single trajectory with i.i.d. random inputs, when nonlinearity does exist.</div></div>\",\"PeriodicalId\":55413,\"journal\":{\"name\":\"Automatica\",\"volume\":\"180 \",\"pages\":\"Article 112478\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automatica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0005109825003735\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005109825003735","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

从数据中辨识线性系统模型在控制理论中有着广泛的应用。现有的为线性系统识别提供有限样本保证的工作通常使用来自随机输入下的单个长系统轨迹的数据,并假设潜在的动力学是真正的线性。相反,我们考虑了当真正的潜在动力学是非线性时识别线性化模型的问题,假设在可以初始化实验的区域上存在一定的约束。我们提供了一种基于多轨迹的确定性数据采集算法,然后是正则化最小二乘算法,并提供了学习到的线性化动力学的有限样本误差界。我们的误差界表明,人们可以始终如一地学习线性化动力学,并证明了非线性误差和噪声误差之间的权衡。我们通过数值实验验证了我们的结果,其中我们还显示了当非线性确实存在时,使用具有i.i.d随机输入的单一轨迹进行线性系统识别的潜在不足。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning linearized models from nonlinear systems under initialization constraints with finite data
The identification of a linear system model from data has wide applications in control theory. The existing work that provides finite sample guarantees for linear system identification typically uses data from a single long system trajectory under i.i.d. random inputs, and assumes that the underlying dynamics is truly linear. In contrast, we consider the problem of identifying a linearized model when the true underlying dynamics is nonlinear, given that there is a certain constraint on the region where one can initialize the experiments. We provide a multiple trajectories-based deterministic data acquisition algorithm followed by a regularized least squares algorithm, and provide a finite sample error bound on the learned linearized dynamics. Our error bound shows that one can consistently learn the linearized dynamics, and demonstrates a trade-off between the error due to nonlinearity and the error due to noise. We validate our results through numerical experiments, where we also show the potential insufficiency of linear system identification using a single trajectory with i.i.d. random inputs, when nonlinearity does exist.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automatica
Automatica 工程技术-工程:电子与电气
CiteScore
10.70
自引率
7.80%
发文量
617
审稿时长
5 months
期刊介绍: Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field. After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience. Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信