先导喷射的动态特性:在类似发动机的条件下,喷雾蒸发、混合气形成和燃烧

IF 2.8 2区 工程技术 Q2 ENGINEERING, MECHANICAL
Shiyan Li , Yijie Wei , Ning Wang , Shuai Huang , Xinyi Zhou , Jiale Cao , Run Chen , Tie Li
{"title":"先导喷射的动态特性:在类似发动机的条件下,喷雾蒸发、混合气形成和燃烧","authors":"Shiyan Li ,&nbsp;Yijie Wei ,&nbsp;Ning Wang ,&nbsp;Shuai Huang ,&nbsp;Xinyi Zhou ,&nbsp;Jiale Cao ,&nbsp;Run Chen ,&nbsp;Tie Li","doi":"10.1016/j.expthermflusci.2025.111564","DOIUrl":null,"url":null,"abstract":"<div><div>In dual-fuel engines, pilot diesel injection critically influences combustion dynamics by initiating alternative fuel ignition, yet excessive replacement ratios may introduce disturbances within the nozzle, impacting external jet atomization and subsequent combustion processes. This study employs high-speed UV-LAS and OH* chemiluminescence imaging techniques to resolve transient mixture formation and flame development, comparing pilot injection (simulated with minimal needle valve activation) against main injection under varied injection pressures and ambient temperatures. Results demonstrate that pilot injection dominates liquid length control—surpassing ambient temperature effects and showing negligible pressure influence—where internal nozzle flow variations emerge as the primary driver of enhanced atomization when ambient enthalpy suffices for evaporation. Auto-ignition timing exhibits strong sensitivity to ambient temperature but minimal pilot-main differences due to comparable stoichiometric mixtures at ignition sites. Flame propagation dynamically self-regulates by targeting vapor-phase penetration, transitioning from entrainment-controlled to combustion-driven expansion. Quantitative analysis confirms pilot injection strategically modulates spatial mixture distribution: enriching near-stoichiometric/fuel-rich zones (φ &gt; 0.8) to enhance low-reactivity fuel (e.g., ammonia) ignition, while rapid post-injection homogenization establishes &gt;90 % lean mixtures (φ ≤ 0.8) within 0.5 <!--> <!-->ms after EOF. These findings establish pilot injection as a precision tool for in-cylinder equivalence ratio control, providing actionable strategies to optimize nozzle dynamics and combustion phasing in advanced dual-fuel systems.</div></div>","PeriodicalId":12294,"journal":{"name":"Experimental Thermal and Fluid Science","volume":"169 ","pages":"Article 111564"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic characteristics of pilot injection: Spray evaporation, mixture formation, and combustion under engine-like conditions\",\"authors\":\"Shiyan Li ,&nbsp;Yijie Wei ,&nbsp;Ning Wang ,&nbsp;Shuai Huang ,&nbsp;Xinyi Zhou ,&nbsp;Jiale Cao ,&nbsp;Run Chen ,&nbsp;Tie Li\",\"doi\":\"10.1016/j.expthermflusci.2025.111564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In dual-fuel engines, pilot diesel injection critically influences combustion dynamics by initiating alternative fuel ignition, yet excessive replacement ratios may introduce disturbances within the nozzle, impacting external jet atomization and subsequent combustion processes. This study employs high-speed UV-LAS and OH* chemiluminescence imaging techniques to resolve transient mixture formation and flame development, comparing pilot injection (simulated with minimal needle valve activation) against main injection under varied injection pressures and ambient temperatures. Results demonstrate that pilot injection dominates liquid length control—surpassing ambient temperature effects and showing negligible pressure influence—where internal nozzle flow variations emerge as the primary driver of enhanced atomization when ambient enthalpy suffices for evaporation. Auto-ignition timing exhibits strong sensitivity to ambient temperature but minimal pilot-main differences due to comparable stoichiometric mixtures at ignition sites. Flame propagation dynamically self-regulates by targeting vapor-phase penetration, transitioning from entrainment-controlled to combustion-driven expansion. Quantitative analysis confirms pilot injection strategically modulates spatial mixture distribution: enriching near-stoichiometric/fuel-rich zones (φ &gt; 0.8) to enhance low-reactivity fuel (e.g., ammonia) ignition, while rapid post-injection homogenization establishes &gt;90 % lean mixtures (φ ≤ 0.8) within 0.5 <!--> <!-->ms after EOF. These findings establish pilot injection as a precision tool for in-cylinder equivalence ratio control, providing actionable strategies to optimize nozzle dynamics and combustion phasing in advanced dual-fuel systems.</div></div>\",\"PeriodicalId\":12294,\"journal\":{\"name\":\"Experimental Thermal and Fluid Science\",\"volume\":\"169 \",\"pages\":\"Article 111564\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Thermal and Fluid Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S089417772500158X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Thermal and Fluid Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089417772500158X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

在双燃料发动机中,先导柴油喷射会引发替代燃料点火,从而严重影响燃烧动力学,但过高的替代比例可能会在喷嘴内引入干扰,影响外部喷射雾化和随后的燃烧过程。本研究采用高速UV-LAS和OH*化学发光成像技术来解决瞬态混合物形成和火焰发展问题,在不同的喷射压力和环境温度下,比较先导喷射(模拟最小针阀激活)和主喷射。结果表明,先导喷射在液体长度控制中占主导地位——超过环境温度效应,压力影响可以忽略不计——当环境焓足以蒸发时,喷嘴内部流量变化成为增强雾化的主要驱动因素。自动点火时间对环境温度表现出很强的敏感性,但由于点火地点的可比化学计量混合物,pilot-main差异极小。火焰传播动态自调节目标汽相穿透,从夹带控制过渡到燃烧驱动的膨胀。定量分析证实,中试注入战略性地调节了空间混合分布:富集近化学计量量/富油区(φ >;0.8)以增强低反应性燃料(如氨)的点火,而快速喷射后均质在EOF后0.5 ms内建立了>; 90%的稀薄混合物(φ≤0.8)。这些发现确立了先导喷射作为缸内等效比控制的精密工具,为优化先进双燃料系统的喷嘴动力学和燃烧相位提供了可行的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic characteristics of pilot injection: Spray evaporation, mixture formation, and combustion under engine-like conditions
In dual-fuel engines, pilot diesel injection critically influences combustion dynamics by initiating alternative fuel ignition, yet excessive replacement ratios may introduce disturbances within the nozzle, impacting external jet atomization and subsequent combustion processes. This study employs high-speed UV-LAS and OH* chemiluminescence imaging techniques to resolve transient mixture formation and flame development, comparing pilot injection (simulated with minimal needle valve activation) against main injection under varied injection pressures and ambient temperatures. Results demonstrate that pilot injection dominates liquid length control—surpassing ambient temperature effects and showing negligible pressure influence—where internal nozzle flow variations emerge as the primary driver of enhanced atomization when ambient enthalpy suffices for evaporation. Auto-ignition timing exhibits strong sensitivity to ambient temperature but minimal pilot-main differences due to comparable stoichiometric mixtures at ignition sites. Flame propagation dynamically self-regulates by targeting vapor-phase penetration, transitioning from entrainment-controlled to combustion-driven expansion. Quantitative analysis confirms pilot injection strategically modulates spatial mixture distribution: enriching near-stoichiometric/fuel-rich zones (φ > 0.8) to enhance low-reactivity fuel (e.g., ammonia) ignition, while rapid post-injection homogenization establishes >90 % lean mixtures (φ ≤ 0.8) within 0.5  ms after EOF. These findings establish pilot injection as a precision tool for in-cylinder equivalence ratio control, providing actionable strategies to optimize nozzle dynamics and combustion phasing in advanced dual-fuel systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental Thermal and Fluid Science
Experimental Thermal and Fluid Science 工程技术-工程:机械
CiteScore
6.70
自引率
3.10%
发文量
159
审稿时长
34 days
期刊介绍: Experimental Thermal and Fluid Science provides a forum for research emphasizing experimental work that enhances fundamental understanding of heat transfer, thermodynamics, and fluid mechanics. In addition to the principal areas of research, the journal covers research results in related fields, including combined heat and mass transfer, flows with phase transition, micro- and nano-scale systems, multiphase flow, combustion, radiative transfer, porous media, cryogenics, turbulence, and novel experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信