卷积神经网络结构中基于尺度不变误差结构相似度测度优化的增强单目深度估计

IF 3.1 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Emadoddin Hemmati , Sina Jarahizadeh , Amir Aghabalaei , Seyed Babak Haji Seyed Asadollah
{"title":"卷积神经网络结构中基于尺度不变误差结构相似度测度优化的增强单目深度估计","authors":"Emadoddin Hemmati ,&nbsp;Sina Jarahizadeh ,&nbsp;Amir Aghabalaei ,&nbsp;Seyed Babak Haji Seyed Asadollah","doi":"10.1016/j.jvcir.2025.104531","DOIUrl":null,"url":null,"abstract":"<div><div>Monocular Depth Estimation (MDE) is crucial for applications like autonomous driving, medical imaging, and 3D modeling. This paper presents a novel Convolutional Neural Network (CNN) architecture that balances performance and computational cost in MDE tasks. Key components include bottleneck mechanisms, Modified Convolutional Block Attention Module (MCBAM), Atrous Spatial Pyramid Pooling (ASPP), and Pyramid Scene Parsing (PSP). Leveraging pre-trained backbones and attention mechanisms, our model significantly improves depth estimation accuracy and reduces computational complexity. Validated using the NYU Depth Dataset V2, our model outperforms existing benchmarks in Absolute Relative Error (Abs Rel), Square Relative Error (Sq Rel), Root Mean Square Error (RMSE), and Thresholding metrics. A novel loss function incorporating Structure Similarity Index Measure (SSIM) and Scale-Invariant Error (SIE) enhances training and evaluation. Our study advances MDE techniques, offering a practical solution with wide-ranging applications. Future research will explore attention mechanisms, fusion approaches, and real-time optimization for greater versatility.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"111 ","pages":"Article 104531"},"PeriodicalIF":3.1000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced monocular depth estimation using novel scale-invariant Error Structure Similarity Index measure optimization in Convolutional Neural network architecture\",\"authors\":\"Emadoddin Hemmati ,&nbsp;Sina Jarahizadeh ,&nbsp;Amir Aghabalaei ,&nbsp;Seyed Babak Haji Seyed Asadollah\",\"doi\":\"10.1016/j.jvcir.2025.104531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Monocular Depth Estimation (MDE) is crucial for applications like autonomous driving, medical imaging, and 3D modeling. This paper presents a novel Convolutional Neural Network (CNN) architecture that balances performance and computational cost in MDE tasks. Key components include bottleneck mechanisms, Modified Convolutional Block Attention Module (MCBAM), Atrous Spatial Pyramid Pooling (ASPP), and Pyramid Scene Parsing (PSP). Leveraging pre-trained backbones and attention mechanisms, our model significantly improves depth estimation accuracy and reduces computational complexity. Validated using the NYU Depth Dataset V2, our model outperforms existing benchmarks in Absolute Relative Error (Abs Rel), Square Relative Error (Sq Rel), Root Mean Square Error (RMSE), and Thresholding metrics. A novel loss function incorporating Structure Similarity Index Measure (SSIM) and Scale-Invariant Error (SIE) enhances training and evaluation. Our study advances MDE techniques, offering a practical solution with wide-ranging applications. Future research will explore attention mechanisms, fusion approaches, and real-time optimization for greater versatility.</div></div>\",\"PeriodicalId\":54755,\"journal\":{\"name\":\"Journal of Visual Communication and Image Representation\",\"volume\":\"111 \",\"pages\":\"Article 104531\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Visual Communication and Image Representation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1047320325001452\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320325001452","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

单目深度估计(MDE)对于自动驾驶、医学成像和3D建模等应用至关重要。本文提出了一种新颖的卷积神经网络(CNN)架构,该架构在MDE任务中平衡了性能和计算成本。关键组件包括瓶颈机制、改进卷积块注意模块(MCBAM)、空间金字塔池(ASPP)和金字塔场景解析(PSP)。利用预训练的骨干和注意力机制,我们的模型显著提高了深度估计的准确性,降低了计算复杂度。使用NYU深度数据集V2进行验证,我们的模型在绝对相对误差(Abs Rel),平方相对误差(Sq Rel),均方根误差(RMSE)和阈值指标方面优于现有基准。一种结合结构相似指数度量(SSIM)和尺度不变误差(SIE)的新型损失函数增强了训练和评估。我们的研究推进了MDE技术,提供了一个具有广泛应用的实用解决方案。未来的研究将探索注意力机制、融合方法和实时优化,以实现更大的通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced monocular depth estimation using novel scale-invariant Error Structure Similarity Index measure optimization in Convolutional Neural network architecture
Monocular Depth Estimation (MDE) is crucial for applications like autonomous driving, medical imaging, and 3D modeling. This paper presents a novel Convolutional Neural Network (CNN) architecture that balances performance and computational cost in MDE tasks. Key components include bottleneck mechanisms, Modified Convolutional Block Attention Module (MCBAM), Atrous Spatial Pyramid Pooling (ASPP), and Pyramid Scene Parsing (PSP). Leveraging pre-trained backbones and attention mechanisms, our model significantly improves depth estimation accuracy and reduces computational complexity. Validated using the NYU Depth Dataset V2, our model outperforms existing benchmarks in Absolute Relative Error (Abs Rel), Square Relative Error (Sq Rel), Root Mean Square Error (RMSE), and Thresholding metrics. A novel loss function incorporating Structure Similarity Index Measure (SSIM) and Scale-Invariant Error (SIE) enhances training and evaluation. Our study advances MDE techniques, offering a practical solution with wide-ranging applications. Future research will explore attention mechanisms, fusion approaches, and real-time optimization for greater versatility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation 工程技术-计算机:软件工程
CiteScore
5.40
自引率
11.50%
发文量
188
审稿时长
9.9 months
期刊介绍: The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信