通过深度学习方法增强基于视觉的结构位移监测

IF 9.1 1区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yu Shanshan , Ziyang Su , Shuai Dong , Xiaoyuan He , Yaqiang Yang , Jian Zhang
{"title":"通过深度学习方法增强基于视觉的结构位移监测","authors":"Yu Shanshan ,&nbsp;Ziyang Su ,&nbsp;Shuai Dong ,&nbsp;Xiaoyuan He ,&nbsp;Yaqiang Yang ,&nbsp;Jian Zhang","doi":"10.1016/j.compind.2025.104337","DOIUrl":null,"url":null,"abstract":"<div><div>Vision-based displacement monitoring for large-scale civil infrastructures remains challenged by limited imaging resolution and uncontrolled camera-motion. This study presents a hybrid deep learning (DL) framework addressing these dual challenges through two technical innovations. Firstly, we develop an enhanced video super-resolution (VSR) architecture based on BasicVSR++, incorporating a novel multi-scale feature extraction module with pre-alignment mechanism which uses a multi-stage bidirectional propagation strategy to optimize temporal feature fusion. Secondly, we devise a dual-stage convolutional neural networks (CNN) architecture for unsupervised homography (H) estimation, enabling coarse-to-fine camera motion compensation through parametric transformation. The integrated displacement measurement method combines super-resolved imagery with KAZE-DIC algorithm for sub-pixel target tracking under challenging conditions including low illumination, texture-deficient backgrounds, and camera-motion. Field validation on an 888-meter suspension bridge demonstrates the framework's potential for structural health monitoring applications. The proposed methodology advances vision-based metrology by simultaneously resolving resolution constraints and motion artifacts through synergistic DL strategies.</div></div>","PeriodicalId":55219,"journal":{"name":"Computers in Industry","volume":"171 ","pages":"Article 104337"},"PeriodicalIF":9.1000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced vision-based structural displacement monitoring through deep learning approaches\",\"authors\":\"Yu Shanshan ,&nbsp;Ziyang Su ,&nbsp;Shuai Dong ,&nbsp;Xiaoyuan He ,&nbsp;Yaqiang Yang ,&nbsp;Jian Zhang\",\"doi\":\"10.1016/j.compind.2025.104337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Vision-based displacement monitoring for large-scale civil infrastructures remains challenged by limited imaging resolution and uncontrolled camera-motion. This study presents a hybrid deep learning (DL) framework addressing these dual challenges through two technical innovations. Firstly, we develop an enhanced video super-resolution (VSR) architecture based on BasicVSR++, incorporating a novel multi-scale feature extraction module with pre-alignment mechanism which uses a multi-stage bidirectional propagation strategy to optimize temporal feature fusion. Secondly, we devise a dual-stage convolutional neural networks (CNN) architecture for unsupervised homography (H) estimation, enabling coarse-to-fine camera motion compensation through parametric transformation. The integrated displacement measurement method combines super-resolved imagery with KAZE-DIC algorithm for sub-pixel target tracking under challenging conditions including low illumination, texture-deficient backgrounds, and camera-motion. Field validation on an 888-meter suspension bridge demonstrates the framework's potential for structural health monitoring applications. The proposed methodology advances vision-based metrology by simultaneously resolving resolution constraints and motion artifacts through synergistic DL strategies.</div></div>\",\"PeriodicalId\":55219,\"journal\":{\"name\":\"Computers in Industry\",\"volume\":\"171 \",\"pages\":\"Article 104337\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in Industry\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166361525001022\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Industry","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166361525001022","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

基于视觉的大型民用基础设施位移监测仍然面临成像分辨率有限和摄像机运动不受控制的挑战。本研究提出了一个混合深度学习(DL)框架,通过两项技术创新来解决这些双重挑战。首先,基于BasicVSR++开发了一种增强的视频超分辨率(VSR)架构,该架构结合了一种新型的多尺度特征提取模块和预对准机制,采用多阶段双向传播策略优化时间特征融合;其次,我们设计了一种双级卷积神经网络(CNN)架构用于无监督单应性(H)估计,通过参数变换实现从粗到精的相机运动补偿。集成位移测量方法将超分辨率图像与KAZE-DIC算法相结合,在低照度、纹理缺乏背景和相机运动等挑战性条件下实现亚像素目标跟踪。在一座888米的悬索桥上进行的现场验证证明了该框架在结构健康监测应用中的潜力。提出的方法通过协同深度学习策略同时解决分辨率约束和运动伪影,从而推进基于视觉的计量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced vision-based structural displacement monitoring through deep learning approaches
Vision-based displacement monitoring for large-scale civil infrastructures remains challenged by limited imaging resolution and uncontrolled camera-motion. This study presents a hybrid deep learning (DL) framework addressing these dual challenges through two technical innovations. Firstly, we develop an enhanced video super-resolution (VSR) architecture based on BasicVSR++, incorporating a novel multi-scale feature extraction module with pre-alignment mechanism which uses a multi-stage bidirectional propagation strategy to optimize temporal feature fusion. Secondly, we devise a dual-stage convolutional neural networks (CNN) architecture for unsupervised homography (H) estimation, enabling coarse-to-fine camera motion compensation through parametric transformation. The integrated displacement measurement method combines super-resolved imagery with KAZE-DIC algorithm for sub-pixel target tracking under challenging conditions including low illumination, texture-deficient backgrounds, and camera-motion. Field validation on an 888-meter suspension bridge demonstrates the framework's potential for structural health monitoring applications. The proposed methodology advances vision-based metrology by simultaneously resolving resolution constraints and motion artifacts through synergistic DL strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers in Industry
Computers in Industry 工程技术-计算机:跨学科应用
CiteScore
18.90
自引率
8.00%
发文量
152
审稿时长
22 days
期刊介绍: The objective of Computers in Industry is to present original, high-quality, application-oriented research papers that: • Illuminate emerging trends and possibilities in the utilization of Information and Communication Technology in industry; • Establish connections or integrations across various technology domains within the expansive realm of computer applications for industry; • Foster connections or integrations across diverse application areas of ICT in industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信