Calum A. Brown, Katarzyna Macieszczak, Robert L. Jack
{"title":"解开量子动力学中的规范自由:不同的连续测量何时产生相同的量子轨迹?","authors":"Calum A. Brown, Katarzyna Macieszczak, Robert L. Jack","doi":"10.22331/q-2025-07-09-1787","DOIUrl":null,"url":null,"abstract":"Quantum trajectories of a Markovian open quantum system arise from the back-action of measurements performed in the environment with which the system interacts. In this work, we consider counting measurements of quantum jumps, corresponding to different representations of the same quantum master equation. We derive necessary and sufficient conditions under which these different measurements give rise to the same unravelled quantum master equation, which governs the dynamics of the probability distribution over pure conditional states of the system. Since that equation uniquely determines the stochastic dynamics of a conditional state, we also obtain necessary and sufficient conditions under which different measurements result in identical quantum trajectories. We then consider the joint stochastic dynamics for the conditional state and the measurement record. We formulate this in terms of labelled quantum trajectories, and derive necessary and sufficient conditions under which different representations lead to equivalent labelled quantum trajectories, up to permutations of labels. As those conditions are generally stricter, we finish by constructing coarse-grained measurement records, such that equivalence of the corresponding partially-labelled trajectories is guaranteed by equivalence of the trajectories alone. These general results are illustrated by two examples that demonstrate permutation of labels, and equivalence of different quantum trajectories.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"10 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gauge freedoms in unravelled quantum dynamics: When do different continuous measurements yield identical quantum trajectories?\",\"authors\":\"Calum A. Brown, Katarzyna Macieszczak, Robert L. Jack\",\"doi\":\"10.22331/q-2025-07-09-1787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum trajectories of a Markovian open quantum system arise from the back-action of measurements performed in the environment with which the system interacts. In this work, we consider counting measurements of quantum jumps, corresponding to different representations of the same quantum master equation. We derive necessary and sufficient conditions under which these different measurements give rise to the same unravelled quantum master equation, which governs the dynamics of the probability distribution over pure conditional states of the system. Since that equation uniquely determines the stochastic dynamics of a conditional state, we also obtain necessary and sufficient conditions under which different measurements result in identical quantum trajectories. We then consider the joint stochastic dynamics for the conditional state and the measurement record. We formulate this in terms of labelled quantum trajectories, and derive necessary and sufficient conditions under which different representations lead to equivalent labelled quantum trajectories, up to permutations of labels. As those conditions are generally stricter, we finish by constructing coarse-grained measurement records, such that equivalence of the corresponding partially-labelled trajectories is guaranteed by equivalence of the trajectories alone. These general results are illustrated by two examples that demonstrate permutation of labels, and equivalence of different quantum trajectories.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2025-07-09-1787\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-07-09-1787","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Gauge freedoms in unravelled quantum dynamics: When do different continuous measurements yield identical quantum trajectories?
Quantum trajectories of a Markovian open quantum system arise from the back-action of measurements performed in the environment with which the system interacts. In this work, we consider counting measurements of quantum jumps, corresponding to different representations of the same quantum master equation. We derive necessary and sufficient conditions under which these different measurements give rise to the same unravelled quantum master equation, which governs the dynamics of the probability distribution over pure conditional states of the system. Since that equation uniquely determines the stochastic dynamics of a conditional state, we also obtain necessary and sufficient conditions under which different measurements result in identical quantum trajectories. We then consider the joint stochastic dynamics for the conditional state and the measurement record. We formulate this in terms of labelled quantum trajectories, and derive necessary and sufficient conditions under which different representations lead to equivalent labelled quantum trajectories, up to permutations of labels. As those conditions are generally stricter, we finish by constructing coarse-grained measurement records, such that equivalence of the corresponding partially-labelled trajectories is guaranteed by equivalence of the trajectories alone. These general results are illustrated by two examples that demonstrate permutation of labels, and equivalence of different quantum trajectories.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.