{"title":"基于联邦学习的无人机零信任轻量级认证网络","authors":"Hao Zhang;Fuhui Zhou;Wei Wang;Qihui Wu;Chau Yuen","doi":"10.1109/TIFS.2025.3587624","DOIUrl":null,"url":null,"abstract":"Unmanned aerial vehicles (UAVs) are increasingly being integrated into next-generation networks to enhance communication coverage and network capacity. However, the dynamic and mobile nature of UAVs poses significant security challenges, including jamming, eavesdropping, and cyber-attacks. To address these security challenges, this paper proposes a federated learning-based lightweight network with zero trust for enhancing the security of UAV networks. A novel lightweight spectrogram network is proposed for UAV authentication and rejection, which can effectively authenticate and reject UAVs based on spectrograms. Experiments highlight LSNet’s superior performance in identifying both known and unknown UAV classes, demonstrating significant improvements over existing benchmarks in terms of accuracy, model compactness, and storage requirements. Notably, LSNet achieves an accuracy of over 80% for known UAV types and an Area Under the Receiver Operating Characteristic (AUROC) of 0.7 for unknown types when trained with all five clients. Further analyses explore the impact of varying the number of clients and the presence of unknown UAVs, reinforcing the practical applicability and effectiveness of our proposed framework in real-world FL scenarios.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"7424-7437"},"PeriodicalIF":8.0000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Federated Learning-Based Lightweight Network With Zero Trust for UAV Authentication\",\"authors\":\"Hao Zhang;Fuhui Zhou;Wei Wang;Qihui Wu;Chau Yuen\",\"doi\":\"10.1109/TIFS.2025.3587624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unmanned aerial vehicles (UAVs) are increasingly being integrated into next-generation networks to enhance communication coverage and network capacity. However, the dynamic and mobile nature of UAVs poses significant security challenges, including jamming, eavesdropping, and cyber-attacks. To address these security challenges, this paper proposes a federated learning-based lightweight network with zero trust for enhancing the security of UAV networks. A novel lightweight spectrogram network is proposed for UAV authentication and rejection, which can effectively authenticate and reject UAVs based on spectrograms. Experiments highlight LSNet’s superior performance in identifying both known and unknown UAV classes, demonstrating significant improvements over existing benchmarks in terms of accuracy, model compactness, and storage requirements. Notably, LSNet achieves an accuracy of over 80% for known UAV types and an Area Under the Receiver Operating Characteristic (AUROC) of 0.7 for unknown types when trained with all five clients. Further analyses explore the impact of varying the number of clients and the presence of unknown UAVs, reinforcing the practical applicability and effectiveness of our proposed framework in real-world FL scenarios.\",\"PeriodicalId\":13492,\"journal\":{\"name\":\"IEEE Transactions on Information Forensics and Security\",\"volume\":\"20 \",\"pages\":\"7424-7437\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Forensics and Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11076091/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11076091/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
A Federated Learning-Based Lightweight Network With Zero Trust for UAV Authentication
Unmanned aerial vehicles (UAVs) are increasingly being integrated into next-generation networks to enhance communication coverage and network capacity. However, the dynamic and mobile nature of UAVs poses significant security challenges, including jamming, eavesdropping, and cyber-attacks. To address these security challenges, this paper proposes a federated learning-based lightweight network with zero trust for enhancing the security of UAV networks. A novel lightweight spectrogram network is proposed for UAV authentication and rejection, which can effectively authenticate and reject UAVs based on spectrograms. Experiments highlight LSNet’s superior performance in identifying both known and unknown UAV classes, demonstrating significant improvements over existing benchmarks in terms of accuracy, model compactness, and storage requirements. Notably, LSNet achieves an accuracy of over 80% for known UAV types and an Area Under the Receiver Operating Characteristic (AUROC) of 0.7 for unknown types when trained with all five clients. Further analyses explore the impact of varying the number of clients and the presence of unknown UAVs, reinforcing the practical applicability and effectiveness of our proposed framework in real-world FL scenarios.
期刊介绍:
The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features