亚纳米ir基合金团簇对水的分层约束效应。

Xuemin Cao, Han Cheng, Renjie Gui, Huijuan Zhang, Caijie Su, Chen Chen, Yifan Yin, Yi Tan, Huijuan Wang, Wangsheng Chu, Yue Lin, Gongming Wang, Yi Xie, Changzheng Wu
{"title":"亚纳米ir基合金团簇对水的分层约束效应。","authors":"Xuemin Cao, Han Cheng, Renjie Gui, Huijuan Zhang, Caijie Su, Chen Chen, Yifan Yin, Yi Tan, Huijuan Wang, Wangsheng Chu, Yue Lin, Gongming Wang, Yi Xie, Changzheng Wu","doi":"10.1002/anie.202509993","DOIUrl":null,"url":null,"abstract":"<p><p>The synthesis of sub-nanoscale noble metal catalysts is pivotal for enhancing electrocatalytic performance, yet achieving precise control over particle size at this scale remains a critical challenge. In this work, we propose a hierarchical confinement strategy which combines spatial confinement at nanoscale and anchoring confinement at atomic scale, to overcome the size limitations imposed by high-temperature sintering. Using this strategy, a series of uniformly sized (~1 nm) Ir-based alloy clusters, including IrMn, IrFe, IrCo, and IrNi, are successfully fabricated. The synthesized sub-nanoscale IrCo alloy clusters (denoted as sub-IrCo cluster) demonstrate exceptional oxygen evolution reaction (OER) catalytic performance, with an ultralow overpotential of 210 mV at 10 mA/cm² and a remarkable mass activity 87.5 times greater than that of commercial IrO2. Density functional theory (DFT) and molecular dynamics (MD) simulations reveal that the incorporation of N enhances the interaction between Ir atoms and the support, which inhibits particle agglomeration. This work provides an effective strategy for preventing particle sintering via a hierarchical confinement effect and achieves precise size control at sub-nanoscale, opening a new avenue for the development of efficient noble metal catalysts with high atomic utilization.</p>","PeriodicalId":520556,"journal":{"name":"Angewandte Chemie (International ed. in English)","volume":" ","pages":"e202509993"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sub-Nano Ir-Based Alloy Clusters by Hierarchical Confinement Effect for Water Splitting.\",\"authors\":\"Xuemin Cao, Han Cheng, Renjie Gui, Huijuan Zhang, Caijie Su, Chen Chen, Yifan Yin, Yi Tan, Huijuan Wang, Wangsheng Chu, Yue Lin, Gongming Wang, Yi Xie, Changzheng Wu\",\"doi\":\"10.1002/anie.202509993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The synthesis of sub-nanoscale noble metal catalysts is pivotal for enhancing electrocatalytic performance, yet achieving precise control over particle size at this scale remains a critical challenge. In this work, we propose a hierarchical confinement strategy which combines spatial confinement at nanoscale and anchoring confinement at atomic scale, to overcome the size limitations imposed by high-temperature sintering. Using this strategy, a series of uniformly sized (~1 nm) Ir-based alloy clusters, including IrMn, IrFe, IrCo, and IrNi, are successfully fabricated. The synthesized sub-nanoscale IrCo alloy clusters (denoted as sub-IrCo cluster) demonstrate exceptional oxygen evolution reaction (OER) catalytic performance, with an ultralow overpotential of 210 mV at 10 mA/cm² and a remarkable mass activity 87.5 times greater than that of commercial IrO2. Density functional theory (DFT) and molecular dynamics (MD) simulations reveal that the incorporation of N enhances the interaction between Ir atoms and the support, which inhibits particle agglomeration. This work provides an effective strategy for preventing particle sintering via a hierarchical confinement effect and achieves precise size control at sub-nanoscale, opening a new avenue for the development of efficient noble metal catalysts with high atomic utilization.</p>\",\"PeriodicalId\":520556,\"journal\":{\"name\":\"Angewandte Chemie (International ed. in English)\",\"volume\":\" \",\"pages\":\"e202509993\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie (International ed. in English)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202509993\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie (International ed. in English)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/anie.202509993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

亚纳米级贵金属催化剂的合成是提高电催化性能的关键,但在这种尺度上实现对颗粒尺寸的精确控制仍然是一个关键的挑战。在这项工作中,我们提出了一种结合纳米尺度空间约束和原子尺度锚定约束的分层约束策略,以克服高温烧结带来的尺寸限制。利用这一策略,成功制备了一系列均匀尺寸(~ 1nm)的IrMn、IrFe、IrCo和IrNi合金团簇。合成的亚纳米级IrCo合金团簇(表示为亚IrCo团簇)表现出优异的析氧反应(OER)催化性能,在10 mA/cm²下具有210 mV的超低过电位,质量活性是商用IrO2的87.5倍。密度泛函理论(DFT)和分子动力学(MD)模拟表明,N的加入增强了Ir原子与载体之间的相互作用,抑制了颗粒团聚。本研究为防止颗粒烧结提供了有效的策略,并在亚纳米尺度上实现了精确的尺寸控制,为开发高原子利用率的高效贵金属催化剂开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sub-Nano Ir-Based Alloy Clusters by Hierarchical Confinement Effect for Water Splitting.

The synthesis of sub-nanoscale noble metal catalysts is pivotal for enhancing electrocatalytic performance, yet achieving precise control over particle size at this scale remains a critical challenge. In this work, we propose a hierarchical confinement strategy which combines spatial confinement at nanoscale and anchoring confinement at atomic scale, to overcome the size limitations imposed by high-temperature sintering. Using this strategy, a series of uniformly sized (~1 nm) Ir-based alloy clusters, including IrMn, IrFe, IrCo, and IrNi, are successfully fabricated. The synthesized sub-nanoscale IrCo alloy clusters (denoted as sub-IrCo cluster) demonstrate exceptional oxygen evolution reaction (OER) catalytic performance, with an ultralow overpotential of 210 mV at 10 mA/cm² and a remarkable mass activity 87.5 times greater than that of commercial IrO2. Density functional theory (DFT) and molecular dynamics (MD) simulations reveal that the incorporation of N enhances the interaction between Ir atoms and the support, which inhibits particle agglomeration. This work provides an effective strategy for preventing particle sintering via a hierarchical confinement effect and achieves precise size control at sub-nanoscale, opening a new avenue for the development of efficient noble metal catalysts with high atomic utilization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信