多位点质子耦合电子转移促进zr基分子配位化合物的氧化光催化。

Mercedes Moreno-Albarracín, Alvaro M Rodriguez-Jimenez, Omar Nuñez, Pablo Garrido-Barros
{"title":"多位点质子耦合电子转移促进zr基分子配位化合物的氧化光催化。","authors":"Mercedes Moreno-Albarracín, Alvaro M Rodriguez-Jimenez, Omar Nuñez, Pablo Garrido-Barros","doi":"10.1002/anie.202510723","DOIUrl":null,"url":null,"abstract":"<p><p>The development of mediators that harness visible light to drive proton-coupled electron transfer (PCET) offers a promising pathway to achieving challenging redox transformations in a more sustainable manner and with enhanced thermochemical efficiency. However, designing photocatalytic systems based on earth-abundant metals while gaining precise control over their excited-state reactivity remains a significant challenge. Here, deprotonation of the hydroxy ligands in the Zr3(O)(OH)3 nodes of a photoactive coordination cage is shown to unlock the photocatalytic oxidation of strong O-H and C-H bonds (70-100 kcal·mol-1). Mechanistic investigations reveal that this oxidative process proceeds via a multisite PCET pathway involving ground-state, pre-association followed by a static quenching mechanism. This contrasts with the dynamic quenching mechanism governing the reductive PCET previously reported for the same system. Collectively, these findings establish an unprecedent ambipolar PCET mechanism with a new class of photocatalytic mediators based on an earth abundant metal.</p>","PeriodicalId":520556,"journal":{"name":"Angewandte Chemie (International ed. in English)","volume":" ","pages":"e202510723"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multisite Proton-Coupled Electron Transfer Facilitates Oxidative Photocatalysis in a Molecular Zr-Based Coordination Compound.\",\"authors\":\"Mercedes Moreno-Albarracín, Alvaro M Rodriguez-Jimenez, Omar Nuñez, Pablo Garrido-Barros\",\"doi\":\"10.1002/anie.202510723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of mediators that harness visible light to drive proton-coupled electron transfer (PCET) offers a promising pathway to achieving challenging redox transformations in a more sustainable manner and with enhanced thermochemical efficiency. However, designing photocatalytic systems based on earth-abundant metals while gaining precise control over their excited-state reactivity remains a significant challenge. Here, deprotonation of the hydroxy ligands in the Zr3(O)(OH)3 nodes of a photoactive coordination cage is shown to unlock the photocatalytic oxidation of strong O-H and C-H bonds (70-100 kcal·mol-1). Mechanistic investigations reveal that this oxidative process proceeds via a multisite PCET pathway involving ground-state, pre-association followed by a static quenching mechanism. This contrasts with the dynamic quenching mechanism governing the reductive PCET previously reported for the same system. Collectively, these findings establish an unprecedent ambipolar PCET mechanism with a new class of photocatalytic mediators based on an earth abundant metal.</p>\",\"PeriodicalId\":520556,\"journal\":{\"name\":\"Angewandte Chemie (International ed. in English)\",\"volume\":\" \",\"pages\":\"e202510723\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie (International ed. in English)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202510723\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie (International ed. in English)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/anie.202510723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用可见光驱动质子耦合电子转移(PCET)的介质的开发,为以更可持续的方式实现具有挑战性的氧化还原转化和提高热化学效率提供了一条有希望的途径。然而,设计基于地球上丰富的金属的光催化系统,同时获得对其激发态反应性的精确控制仍然是一个重大挑战。在这里,羟基配体在光活性配位笼的Zr3(O)(OH)3节点上的去质子化可以解除强O- h和C-H键(70-100 kcal·mol-1)的光催化氧化。机理研究表明,这一氧化过程通过多位点PCET途径进行,包括基态、预结合和静态猝灭机制。这与先前报道的同一体系中控制还原性PCET的动态淬火机制形成对比。总的来说,这些发现建立了一个前所未有的双极性PCET机制与一类新的光催化介质基于地球丰富的金属。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multisite Proton-Coupled Electron Transfer Facilitates Oxidative Photocatalysis in a Molecular Zr-Based Coordination Compound.

The development of mediators that harness visible light to drive proton-coupled electron transfer (PCET) offers a promising pathway to achieving challenging redox transformations in a more sustainable manner and with enhanced thermochemical efficiency. However, designing photocatalytic systems based on earth-abundant metals while gaining precise control over their excited-state reactivity remains a significant challenge. Here, deprotonation of the hydroxy ligands in the Zr3(O)(OH)3 nodes of a photoactive coordination cage is shown to unlock the photocatalytic oxidation of strong O-H and C-H bonds (70-100 kcal·mol-1). Mechanistic investigations reveal that this oxidative process proceeds via a multisite PCET pathway involving ground-state, pre-association followed by a static quenching mechanism. This contrasts with the dynamic quenching mechanism governing the reductive PCET previously reported for the same system. Collectively, these findings establish an unprecedent ambipolar PCET mechanism with a new class of photocatalytic mediators based on an earth abundant metal.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信