Jessica X Song, Brittan S Scales, Minh Nguyen, Emelie Westberg, Bartosz Witalis, Barbara Urban-Malinga, Sonja Oberbeckmann
{"title":"微尺度上的近距离接触:多环芳烃的微塑料吸附及其对相关生物膜群落的潜在影响。","authors":"Jessica X Song, Brittan S Scales, Minh Nguyen, Emelie Westberg, Bartosz Witalis, Barbara Urban-Malinga, Sonja Oberbeckmann","doi":"10.1186/s40793-025-00747-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Within systems as dynamic as the aquatic environment, it is crucial to address the impacts of an ever-growing network of emerging pollutants at their intersection. With previous research having demonstrated the capacity of microplastics (MPs) to sorb persistent organic pollutants, we ask in our study how different plastic polymers that are found throughout aquatic systems interact with polycyclic aromatic hydrocarbons (PAHs) and how this intersection of pollutants might impact the bacterial communities that form on MP surfaces. We performed an in situ incubation experiment at different sites along the Baltic Sea coast and through a PAH and 16S amplicon analysis, we investigated the sorption patterns of different substrates and their potential impacts on associated biofilm communities.</p><p><strong>Results: </strong>PAH sorption patterns of polyethylene (PE), polystyrene (PS), and aquaria stone were found to be dictated predominantly by substrate type and secondly by incubation site. While PE showed a general positive trend of sorption, stone rather leached PAHs into the environment, whereas the PAH levels of PS remained relatively unchanged following incubation. These sorption patterns correlated significantly with the composition of biofilm communities observed on all three substrate types after a 6-week incubation period. Strong correlations between specific PAHs and bacterial taxa indicate a direct relationship between these factors. Elevated levels of specific 3- and 4-ring PAHs on PE and PS coincided with higher proportions of specific taxa reportedly capable of hydrocarbon utilisation as well as a reduced diversity among biofilm communities.</p><p><strong>Conclusion: </strong>The findings in our study highlight the importance of investigating contaminants such as MPs holistically, including any associated substances, to fully understand how they impact surrounding ecological systems as they traverse the different compartments of the aquatic ecosystem.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"20 1","pages":"84"},"PeriodicalIF":6.2000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12239331/pdf/","citationCount":"0","resultStr":"{\"title\":\"Close encounters on a micro scale: microplastic sorption of polycyclic aromatic hydrocarbons and their potential effects on associated biofilm communities.\",\"authors\":\"Jessica X Song, Brittan S Scales, Minh Nguyen, Emelie Westberg, Bartosz Witalis, Barbara Urban-Malinga, Sonja Oberbeckmann\",\"doi\":\"10.1186/s40793-025-00747-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Within systems as dynamic as the aquatic environment, it is crucial to address the impacts of an ever-growing network of emerging pollutants at their intersection. With previous research having demonstrated the capacity of microplastics (MPs) to sorb persistent organic pollutants, we ask in our study how different plastic polymers that are found throughout aquatic systems interact with polycyclic aromatic hydrocarbons (PAHs) and how this intersection of pollutants might impact the bacterial communities that form on MP surfaces. We performed an in situ incubation experiment at different sites along the Baltic Sea coast and through a PAH and 16S amplicon analysis, we investigated the sorption patterns of different substrates and their potential impacts on associated biofilm communities.</p><p><strong>Results: </strong>PAH sorption patterns of polyethylene (PE), polystyrene (PS), and aquaria stone were found to be dictated predominantly by substrate type and secondly by incubation site. While PE showed a general positive trend of sorption, stone rather leached PAHs into the environment, whereas the PAH levels of PS remained relatively unchanged following incubation. These sorption patterns correlated significantly with the composition of biofilm communities observed on all three substrate types after a 6-week incubation period. Strong correlations between specific PAHs and bacterial taxa indicate a direct relationship between these factors. Elevated levels of specific 3- and 4-ring PAHs on PE and PS coincided with higher proportions of specific taxa reportedly capable of hydrocarbon utilisation as well as a reduced diversity among biofilm communities.</p><p><strong>Conclusion: </strong>The findings in our study highlight the importance of investigating contaminants such as MPs holistically, including any associated substances, to fully understand how they impact surrounding ecological systems as they traverse the different compartments of the aquatic ecosystem.</p>\",\"PeriodicalId\":48553,\"journal\":{\"name\":\"Environmental Microbiome\",\"volume\":\"20 1\",\"pages\":\"84\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12239331/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Microbiome\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1186/s40793-025-00747-w\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiome","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1186/s40793-025-00747-w","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Close encounters on a micro scale: microplastic sorption of polycyclic aromatic hydrocarbons and their potential effects on associated biofilm communities.
Background: Within systems as dynamic as the aquatic environment, it is crucial to address the impacts of an ever-growing network of emerging pollutants at their intersection. With previous research having demonstrated the capacity of microplastics (MPs) to sorb persistent organic pollutants, we ask in our study how different plastic polymers that are found throughout aquatic systems interact with polycyclic aromatic hydrocarbons (PAHs) and how this intersection of pollutants might impact the bacterial communities that form on MP surfaces. We performed an in situ incubation experiment at different sites along the Baltic Sea coast and through a PAH and 16S amplicon analysis, we investigated the sorption patterns of different substrates and their potential impacts on associated biofilm communities.
Results: PAH sorption patterns of polyethylene (PE), polystyrene (PS), and aquaria stone were found to be dictated predominantly by substrate type and secondly by incubation site. While PE showed a general positive trend of sorption, stone rather leached PAHs into the environment, whereas the PAH levels of PS remained relatively unchanged following incubation. These sorption patterns correlated significantly with the composition of biofilm communities observed on all three substrate types after a 6-week incubation period. Strong correlations between specific PAHs and bacterial taxa indicate a direct relationship between these factors. Elevated levels of specific 3- and 4-ring PAHs on PE and PS coincided with higher proportions of specific taxa reportedly capable of hydrocarbon utilisation as well as a reduced diversity among biofilm communities.
Conclusion: The findings in our study highlight the importance of investigating contaminants such as MPs holistically, including any associated substances, to fully understand how they impact surrounding ecological systems as they traverse the different compartments of the aquatic ecosystem.
期刊介绍:
Microorganisms, omnipresent across Earth's diverse environments, play a crucial role in adapting to external changes, influencing Earth's systems and cycles, and contributing significantly to agricultural practices. Through applied microbiology, they offer solutions to various everyday needs. Environmental Microbiome recognizes the universal presence and significance of microorganisms, inviting submissions that explore the diverse facets of environmental and applied microbiological research.