Xiao-Lu Zhang, Tian-Peng Wei, Fan Yang, Huan-Huan Liu, Ling-Ling Qian, Ru-Xing Wang
{"title":"电压门控钠通道:缺血性心脏病的治疗靶点。","authors":"Xiao-Lu Zhang, Tian-Peng Wei, Fan Yang, Huan-Huan Liu, Ling-Ling Qian, Ru-Xing Wang","doi":"10.31083/RCM27140","DOIUrl":null,"url":null,"abstract":"<p><p>Myocardial infarction (MI)-related arrhythmias are an essential risk factor in sudden cardiac death. Aberrant cardiac the cardiac voltage-gated sodium channel (Nav1.5) is important in the development of ventricular arrhythmias after an MI. These mechanisms are profoundly complex and involve sodium voltage-gated channel α subunit 5 (<i>SCN5A</i>) and sodium voltage-gated channel α subunit 10 (<i>SCN10A</i>) single nucleotide polymorphisms, aberrant splicing of <i>SCN5A</i> mRNAs, transcriptional and post-transcriptional regulation, translation, post-translational transport, and modification, along with protein degradation. These mechanisms ultimately promote a decrease in peak sodium currents, an increase in late sodium currents, and changes in sodium channel kinetics. This review aimed to explore the specific mechanisms of Nav1.5 in post-MI arrhythmias and summarize the potential of therapeutic drugs. An in-depth study of the effect of Nav1.5 on arrhythmias after myocardial ischemia is of crucial clinical significance.</p>","PeriodicalId":20989,"journal":{"name":"Reviews in cardiovascular medicine","volume":"26 6","pages":"27140"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12230830/pdf/","citationCount":"0","resultStr":"{\"title\":\"Voltage-Gated Sodium Channels: A Therapeutic Target in Ischemic Heart Disease.\",\"authors\":\"Xiao-Lu Zhang, Tian-Peng Wei, Fan Yang, Huan-Huan Liu, Ling-Ling Qian, Ru-Xing Wang\",\"doi\":\"10.31083/RCM27140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Myocardial infarction (MI)-related arrhythmias are an essential risk factor in sudden cardiac death. Aberrant cardiac the cardiac voltage-gated sodium channel (Nav1.5) is important in the development of ventricular arrhythmias after an MI. These mechanisms are profoundly complex and involve sodium voltage-gated channel α subunit 5 (<i>SCN5A</i>) and sodium voltage-gated channel α subunit 10 (<i>SCN10A</i>) single nucleotide polymorphisms, aberrant splicing of <i>SCN5A</i> mRNAs, transcriptional and post-transcriptional regulation, translation, post-translational transport, and modification, along with protein degradation. These mechanisms ultimately promote a decrease in peak sodium currents, an increase in late sodium currents, and changes in sodium channel kinetics. This review aimed to explore the specific mechanisms of Nav1.5 in post-MI arrhythmias and summarize the potential of therapeutic drugs. An in-depth study of the effect of Nav1.5 on arrhythmias after myocardial ischemia is of crucial clinical significance.</p>\",\"PeriodicalId\":20989,\"journal\":{\"name\":\"Reviews in cardiovascular medicine\",\"volume\":\"26 6\",\"pages\":\"27140\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12230830/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in cardiovascular medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.31083/RCM27140\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in cardiovascular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.31083/RCM27140","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Voltage-Gated Sodium Channels: A Therapeutic Target in Ischemic Heart Disease.
Myocardial infarction (MI)-related arrhythmias are an essential risk factor in sudden cardiac death. Aberrant cardiac the cardiac voltage-gated sodium channel (Nav1.5) is important in the development of ventricular arrhythmias after an MI. These mechanisms are profoundly complex and involve sodium voltage-gated channel α subunit 5 (SCN5A) and sodium voltage-gated channel α subunit 10 (SCN10A) single nucleotide polymorphisms, aberrant splicing of SCN5A mRNAs, transcriptional and post-transcriptional regulation, translation, post-translational transport, and modification, along with protein degradation. These mechanisms ultimately promote a decrease in peak sodium currents, an increase in late sodium currents, and changes in sodium channel kinetics. This review aimed to explore the specific mechanisms of Nav1.5 in post-MI arrhythmias and summarize the potential of therapeutic drugs. An in-depth study of the effect of Nav1.5 on arrhythmias after myocardial ischemia is of crucial clinical significance.
期刊介绍:
RCM is an international, peer-reviewed, open access journal. RCM publishes research articles, review papers and short communications on cardiovascular medicine as well as research on cardiovascular disease. We aim to provide a forum for publishing papers which explore the pathogenesis and promote the progression of cardiac and vascular diseases. We also seek to establish an interdisciplinary platform, focusing on translational issues, to facilitate the advancement of research, clinical treatment and diagnostic procedures. Heart surgery, cardiovascular imaging, risk factors and various clinical cardiac & vascular research will be considered.