Vishal Singh Roha, Rahul Ranjan, Mehmet Rasit Yuce
{"title":"不断发展的血压估计:从特征分析到基于图像的深度学习模型。","authors":"Vishal Singh Roha, Rahul Ranjan, Mehmet Rasit Yuce","doi":"10.1007/s10916-025-02228-6","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional cuffless blood pressure (BP) estimation methods often require collecting physiological signals, such as electrocardiogram (ECG) and photoplethysmography (PPG), from two distinct body sites to compute metrics like pulse transit time (PTT) or pulse arrival time (PAT). While these metrics strongly correlate with BP, their reliance on multiple signal sources and susceptibility to noise from modern wearable devices present significant challenges. Addressing these limitations, we propose an innovative framework that requires only PPG signals from a single body site, leveraging advancements in artificial intelligence and computer vision. Our approach employs images of PPG signals, along with their first (vPPG) and second (aPPG) derivatives, for enhanced BP estimation. ResNet-50 is utilized to extract features and identify regions within the PPG, vPPG, and aPPG images that correlate strongly with BP. These features are further refined using multi-head cross-attention (MHCA) mechanism, enabling efficient information exchange across the modalities derived from ResNet-50 outputs, thereby improving estimation accuracy. The framework is validated on three distinct datasets, demonstrating superior performance compared to traditional PAT and PTT-based methods. Furthermore, it adheres to stringent medical standards, such as those defined by the Association for the Advancement of Medical Instrumentation (AAMI) and the British Hypertension Society (BHS), ensuring clinical reliability. By reducing the need for multiple signal sources and incorporating cutting-edge AI techniques, this framework represents a significant advancement in non-invasive BP monitoring, offering a more practical and accurate alternative to traditional methodologies.</p>","PeriodicalId":16338,"journal":{"name":"Journal of Medical Systems","volume":"49 1","pages":"97"},"PeriodicalIF":5.7000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12241270/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evolving Blood Pressure Estimation: From Feature Analysis to Image-Based Deep Learning Models.\",\"authors\":\"Vishal Singh Roha, Rahul Ranjan, Mehmet Rasit Yuce\",\"doi\":\"10.1007/s10916-025-02228-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traditional cuffless blood pressure (BP) estimation methods often require collecting physiological signals, such as electrocardiogram (ECG) and photoplethysmography (PPG), from two distinct body sites to compute metrics like pulse transit time (PTT) or pulse arrival time (PAT). While these metrics strongly correlate with BP, their reliance on multiple signal sources and susceptibility to noise from modern wearable devices present significant challenges. Addressing these limitations, we propose an innovative framework that requires only PPG signals from a single body site, leveraging advancements in artificial intelligence and computer vision. Our approach employs images of PPG signals, along with their first (vPPG) and second (aPPG) derivatives, for enhanced BP estimation. ResNet-50 is utilized to extract features and identify regions within the PPG, vPPG, and aPPG images that correlate strongly with BP. These features are further refined using multi-head cross-attention (MHCA) mechanism, enabling efficient information exchange across the modalities derived from ResNet-50 outputs, thereby improving estimation accuracy. The framework is validated on three distinct datasets, demonstrating superior performance compared to traditional PAT and PTT-based methods. Furthermore, it adheres to stringent medical standards, such as those defined by the Association for the Advancement of Medical Instrumentation (AAMI) and the British Hypertension Society (BHS), ensuring clinical reliability. By reducing the need for multiple signal sources and incorporating cutting-edge AI techniques, this framework represents a significant advancement in non-invasive BP monitoring, offering a more practical and accurate alternative to traditional methodologies.</p>\",\"PeriodicalId\":16338,\"journal\":{\"name\":\"Journal of Medical Systems\",\"volume\":\"49 1\",\"pages\":\"97\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12241270/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Systems\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10916-025-02228-6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10916-025-02228-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Evolving Blood Pressure Estimation: From Feature Analysis to Image-Based Deep Learning Models.
Traditional cuffless blood pressure (BP) estimation methods often require collecting physiological signals, such as electrocardiogram (ECG) and photoplethysmography (PPG), from two distinct body sites to compute metrics like pulse transit time (PTT) or pulse arrival time (PAT). While these metrics strongly correlate with BP, their reliance on multiple signal sources and susceptibility to noise from modern wearable devices present significant challenges. Addressing these limitations, we propose an innovative framework that requires only PPG signals from a single body site, leveraging advancements in artificial intelligence and computer vision. Our approach employs images of PPG signals, along with their first (vPPG) and second (aPPG) derivatives, for enhanced BP estimation. ResNet-50 is utilized to extract features and identify regions within the PPG, vPPG, and aPPG images that correlate strongly with BP. These features are further refined using multi-head cross-attention (MHCA) mechanism, enabling efficient information exchange across the modalities derived from ResNet-50 outputs, thereby improving estimation accuracy. The framework is validated on three distinct datasets, demonstrating superior performance compared to traditional PAT and PTT-based methods. Furthermore, it adheres to stringent medical standards, such as those defined by the Association for the Advancement of Medical Instrumentation (AAMI) and the British Hypertension Society (BHS), ensuring clinical reliability. By reducing the need for multiple signal sources and incorporating cutting-edge AI techniques, this framework represents a significant advancement in non-invasive BP monitoring, offering a more practical and accurate alternative to traditional methodologies.
期刊介绍:
Journal of Medical Systems provides a forum for the presentation and discussion of the increasingly extensive applications of new systems techniques and methods in hospital clinic and physician''s office administration; pathology radiology and pharmaceutical delivery systems; medical records storage and retrieval; and ancillary patient-support systems. The journal publishes informative articles essays and studies across the entire scale of medical systems from large hospital programs to novel small-scale medical services. Education is an integral part of this amalgamation of sciences and selected articles are published in this area. Since existing medical systems are constantly being modified to fit particular circumstances and to solve specific problems the journal includes a special section devoted to status reports on current installations.