{"title":"维生素D代谢的关键基因及其在癌症风险和预后中的作用。","authors":"Sijie Zheng, Lizhu Zhu, Yufei Wang, Yixin Hua, Jie Ying, Jianxiang Chen","doi":"10.3389/fgene.2025.1598525","DOIUrl":null,"url":null,"abstract":"<p><p>Vitamin D is an essential vitamin for normal human metabolism and plays pivotal roles in various biological processes, such as maintaining calcium and phosphorus balance, regulating immune responses, and promoting cell differentiation while inhibiting proliferation. Vitamin D is obtained through sunlight exposure and diet, and is metabolized into its active form via hydroxylation in liver and kidney. Vitamin D deficiency is linked to various diseases, including skeletal disorders, diabetes, and cardiovascular diseases. Recent epidemiology and oncology research have demonstrated that serum vitamin D level, as well as genetic polymorphisms and expression dysregulation of genes related with vitamin D metabolism, have significantly influences on the incidence and prognosis of various types of cancer, including breast cancer, prostate cancer, liver cancer, gastrointestinal malignancy, and hematologic malignancies. The mechanisms linking vitamin D metabolism dysregulation to malignancy are multifactorial, such as the alteration in cell metabolism, proliferation, differentiation, and tumor microenvironment. These findings suggest potential therapeutic benefits of targeting the vitamin D signaling pathway for the diagnosis and treatment of cancer. However, there is still a lack of clinical applications regarding the knowledge of vitamin D metabolic pathway, and future research is urgently needed to illustrate the underlying mechanisms for the rationale design of clinical trials. Therefore, this review summarizes the metabolic pathways of vitamin D and its association with cancer, highlighting the importance of genetic polymorphisms and expression dysregulation of genes involved in vitamin D metabolism in cancer susceptibility and prognosis.</p>","PeriodicalId":12750,"journal":{"name":"Frontiers in Genetics","volume":"16 ","pages":"1598525"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12234307/pdf/","citationCount":"0","resultStr":"{\"title\":\"Key genes of vitamin D metabolism and their roles in the risk and prognosis of cancer.\",\"authors\":\"Sijie Zheng, Lizhu Zhu, Yufei Wang, Yixin Hua, Jie Ying, Jianxiang Chen\",\"doi\":\"10.3389/fgene.2025.1598525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vitamin D is an essential vitamin for normal human metabolism and plays pivotal roles in various biological processes, such as maintaining calcium and phosphorus balance, regulating immune responses, and promoting cell differentiation while inhibiting proliferation. Vitamin D is obtained through sunlight exposure and diet, and is metabolized into its active form via hydroxylation in liver and kidney. Vitamin D deficiency is linked to various diseases, including skeletal disorders, diabetes, and cardiovascular diseases. Recent epidemiology and oncology research have demonstrated that serum vitamin D level, as well as genetic polymorphisms and expression dysregulation of genes related with vitamin D metabolism, have significantly influences on the incidence and prognosis of various types of cancer, including breast cancer, prostate cancer, liver cancer, gastrointestinal malignancy, and hematologic malignancies. The mechanisms linking vitamin D metabolism dysregulation to malignancy are multifactorial, such as the alteration in cell metabolism, proliferation, differentiation, and tumor microenvironment. These findings suggest potential therapeutic benefits of targeting the vitamin D signaling pathway for the diagnosis and treatment of cancer. However, there is still a lack of clinical applications regarding the knowledge of vitamin D metabolic pathway, and future research is urgently needed to illustrate the underlying mechanisms for the rationale design of clinical trials. Therefore, this review summarizes the metabolic pathways of vitamin D and its association with cancer, highlighting the importance of genetic polymorphisms and expression dysregulation of genes involved in vitamin D metabolism in cancer susceptibility and prognosis.</p>\",\"PeriodicalId\":12750,\"journal\":{\"name\":\"Frontiers in Genetics\",\"volume\":\"16 \",\"pages\":\"1598525\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12234307/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fgene.2025.1598525\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fgene.2025.1598525","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Key genes of vitamin D metabolism and their roles in the risk and prognosis of cancer.
Vitamin D is an essential vitamin for normal human metabolism and plays pivotal roles in various biological processes, such as maintaining calcium and phosphorus balance, regulating immune responses, and promoting cell differentiation while inhibiting proliferation. Vitamin D is obtained through sunlight exposure and diet, and is metabolized into its active form via hydroxylation in liver and kidney. Vitamin D deficiency is linked to various diseases, including skeletal disorders, diabetes, and cardiovascular diseases. Recent epidemiology and oncology research have demonstrated that serum vitamin D level, as well as genetic polymorphisms and expression dysregulation of genes related with vitamin D metabolism, have significantly influences on the incidence and prognosis of various types of cancer, including breast cancer, prostate cancer, liver cancer, gastrointestinal malignancy, and hematologic malignancies. The mechanisms linking vitamin D metabolism dysregulation to malignancy are multifactorial, such as the alteration in cell metabolism, proliferation, differentiation, and tumor microenvironment. These findings suggest potential therapeutic benefits of targeting the vitamin D signaling pathway for the diagnosis and treatment of cancer. However, there is still a lack of clinical applications regarding the knowledge of vitamin D metabolic pathway, and future research is urgently needed to illustrate the underlying mechanisms for the rationale design of clinical trials. Therefore, this review summarizes the metabolic pathways of vitamin D and its association with cancer, highlighting the importance of genetic polymorphisms and expression dysregulation of genes involved in vitamin D metabolism in cancer susceptibility and prognosis.
Frontiers in GeneticsBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
5.50
自引率
8.10%
发文量
3491
审稿时长
14 weeks
期刊介绍:
Frontiers in Genetics publishes rigorously peer-reviewed research on genes and genomes relating to all the domains of life, from humans to plants to livestock and other model organisms. Led by an outstanding Editorial Board of the world’s leading experts, this multidisciplinary, open-access journal is at the forefront of communicating cutting-edge research to researchers, academics, clinicians, policy makers and the public.
The study of inheritance and the impact of the genome on various biological processes is well documented. However, the majority of discoveries are still to come. A new era is seeing major developments in the function and variability of the genome, the use of genetic and genomic tools and the analysis of the genetic basis of various biological phenomena.