Philip Steiner, Korollus Melek, Ancuela Andosch, Lena Wiesbauer, Anna Madlmayr, Michelle Duggan, Hubert H Kerschbaum, Susanna Zierler
{"title":"Thapsigargin在嗜碱性白血病细胞中引发非凋亡性、不依赖caspase的程序性细胞死亡。","authors":"Philip Steiner, Korollus Melek, Ancuela Andosch, Lena Wiesbauer, Anna Madlmayr, Michelle Duggan, Hubert H Kerschbaum, Susanna Zierler","doi":"10.1038/s41420-025-02602-w","DOIUrl":null,"url":null,"abstract":"<p><p>Thapsigargin (TG), a potent inhibitor of the sarco/endoplasmic reticulum Ca²⁺-ATPase (SERCA), is widely used to study intracellular Ca²⁺ homeostasis and has shown-along prodrug derivatives-promise as an anticancer agent. While TG is traditionally considered an inducer of apoptosis, the precise mode of cell death it triggers remains incompletely defined. Here, we investigated the effects of TG on rat basophilic leukaemia (RBL-1) cells using advanced 2D and 3D transmission electron microscopy, confocal laser scanning microscopy, and functional cell death assays. TG treatment led to marked ultrastructural alterations, including pronounced ballooning of the perinuclear space, extensive vacuolization, mitochondrial enlargement and degradation, and structural anomalies of the endoplasmic reticulum. Notably, classical apoptotic features such as nuclear fragmentation, chromatin condensation and apoptotic body formation were absent. Functional assays revealed minimal caspase-3/7 activation and low Annexin V staining, indicating a caspase-independent, non-apoptotic form of programmed cell death (PCD). Morphological and quantitative analyses demonstrated that TG-induced cell death in RBL-1 cells closely resembles autosis, a non-apoptotic, autophagy-dependent PCD characterized by perinuclear space ballooning and increased autophagolysosome formation. These autosis-like features were also observed in TG-treated murine macrophages and human mast cells, suggesting a conserved mechanism across cell types. Digoxin, a Na⁺/K⁺-ATPase inhibitor, partially reversed TG-induced ultrastructural damage, supporting the involvement of Na⁺/K⁺-ATPase in this process. Ca²⁺ imaging confirmed that TG-induced cytosolic Ca²⁺ elevation is primarily driven by ER Ca²⁺ release, with extracellular Ca²⁺ amplifying the response. Our findings establish that TG induces a non-apoptotic, caspase-independent PCD matching autosis, challenging the prevailing view of TG as a classical apoptosis inducer. This insight has important implications for research on intracellular Ca<sup>2+</sup> homeostasis as well as for the therapeutic exploitation of TG and its derivatives in targeting apoptosis-resistant cancer cells.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"313"},"PeriodicalIF":6.1000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12238333/pdf/","citationCount":"0","resultStr":"{\"title\":\"Thapsigargin triggers a non-apoptotic, caspase-independent programmed cell death in basophilic leukaemia cells.\",\"authors\":\"Philip Steiner, Korollus Melek, Ancuela Andosch, Lena Wiesbauer, Anna Madlmayr, Michelle Duggan, Hubert H Kerschbaum, Susanna Zierler\",\"doi\":\"10.1038/s41420-025-02602-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Thapsigargin (TG), a potent inhibitor of the sarco/endoplasmic reticulum Ca²⁺-ATPase (SERCA), is widely used to study intracellular Ca²⁺ homeostasis and has shown-along prodrug derivatives-promise as an anticancer agent. While TG is traditionally considered an inducer of apoptosis, the precise mode of cell death it triggers remains incompletely defined. Here, we investigated the effects of TG on rat basophilic leukaemia (RBL-1) cells using advanced 2D and 3D transmission electron microscopy, confocal laser scanning microscopy, and functional cell death assays. TG treatment led to marked ultrastructural alterations, including pronounced ballooning of the perinuclear space, extensive vacuolization, mitochondrial enlargement and degradation, and structural anomalies of the endoplasmic reticulum. Notably, classical apoptotic features such as nuclear fragmentation, chromatin condensation and apoptotic body formation were absent. Functional assays revealed minimal caspase-3/7 activation and low Annexin V staining, indicating a caspase-independent, non-apoptotic form of programmed cell death (PCD). Morphological and quantitative analyses demonstrated that TG-induced cell death in RBL-1 cells closely resembles autosis, a non-apoptotic, autophagy-dependent PCD characterized by perinuclear space ballooning and increased autophagolysosome formation. These autosis-like features were also observed in TG-treated murine macrophages and human mast cells, suggesting a conserved mechanism across cell types. Digoxin, a Na⁺/K⁺-ATPase inhibitor, partially reversed TG-induced ultrastructural damage, supporting the involvement of Na⁺/K⁺-ATPase in this process. Ca²⁺ imaging confirmed that TG-induced cytosolic Ca²⁺ elevation is primarily driven by ER Ca²⁺ release, with extracellular Ca²⁺ amplifying the response. Our findings establish that TG induces a non-apoptotic, caspase-independent PCD matching autosis, challenging the prevailing view of TG as a classical apoptosis inducer. This insight has important implications for research on intracellular Ca<sup>2+</sup> homeostasis as well as for the therapeutic exploitation of TG and its derivatives in targeting apoptosis-resistant cancer cells.</p>\",\"PeriodicalId\":9735,\"journal\":{\"name\":\"Cell Death Discovery\",\"volume\":\"11 1\",\"pages\":\"313\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12238333/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death Discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41420-025-02602-w\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-025-02602-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Thapsigargin triggers a non-apoptotic, caspase-independent programmed cell death in basophilic leukaemia cells.
Thapsigargin (TG), a potent inhibitor of the sarco/endoplasmic reticulum Ca²⁺-ATPase (SERCA), is widely used to study intracellular Ca²⁺ homeostasis and has shown-along prodrug derivatives-promise as an anticancer agent. While TG is traditionally considered an inducer of apoptosis, the precise mode of cell death it triggers remains incompletely defined. Here, we investigated the effects of TG on rat basophilic leukaemia (RBL-1) cells using advanced 2D and 3D transmission electron microscopy, confocal laser scanning microscopy, and functional cell death assays. TG treatment led to marked ultrastructural alterations, including pronounced ballooning of the perinuclear space, extensive vacuolization, mitochondrial enlargement and degradation, and structural anomalies of the endoplasmic reticulum. Notably, classical apoptotic features such as nuclear fragmentation, chromatin condensation and apoptotic body formation were absent. Functional assays revealed minimal caspase-3/7 activation and low Annexin V staining, indicating a caspase-independent, non-apoptotic form of programmed cell death (PCD). Morphological and quantitative analyses demonstrated that TG-induced cell death in RBL-1 cells closely resembles autosis, a non-apoptotic, autophagy-dependent PCD characterized by perinuclear space ballooning and increased autophagolysosome formation. These autosis-like features were also observed in TG-treated murine macrophages and human mast cells, suggesting a conserved mechanism across cell types. Digoxin, a Na⁺/K⁺-ATPase inhibitor, partially reversed TG-induced ultrastructural damage, supporting the involvement of Na⁺/K⁺-ATPase in this process. Ca²⁺ imaging confirmed that TG-induced cytosolic Ca²⁺ elevation is primarily driven by ER Ca²⁺ release, with extracellular Ca²⁺ amplifying the response. Our findings establish that TG induces a non-apoptotic, caspase-independent PCD matching autosis, challenging the prevailing view of TG as a classical apoptosis inducer. This insight has important implications for research on intracellular Ca2+ homeostasis as well as for the therapeutic exploitation of TG and its derivatives in targeting apoptosis-resistant cancer cells.
期刊介绍:
Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary.
Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.