{"title":"在虚拟环境中实现导航的基于三类运动图像的脑机接口的特定主题特征提取方法:开放获取框架。","authors":"Fardin Afdideh, Mohammad Bagher Shamsollahi","doi":"10.1088/2057-1976/aded19","DOIUrl":null,"url":null,"abstract":"<p><p>Brain-Computer Interface (BCI) is a system that aids individuals with disabilities to establish a novel communication channel between the brain and computer. Among various electrophysiological sources that can drive a BCI system, Motor Imagery (MI) facilitates more natural communication for users with motor disabilities, whereas electroencephalogram (EEG) is considered the most practical brain imaging modality. However, subject training is a critical aspect of such a type of BCI. One possible solution to address this challenge is to leverage the Virtual Reality (VR) technology. This study proposes a VR in MI- and EEG-based BCI (MI-EEG-BCI-VR) framework wherein users navigate a Virtual Environment (VE) following cue-based training, and employing a subject-specific feature extraction approach. The assigned task involves performing the left hand, right hand, and feet movement imagination to navigate from the start station to the end station as quickly as possible. The generated brain signals are collected using three bipolar EEG channels only. The proposed open-access MATLAB-based MI-EEG-BCI-VR framework was validated with eight healthy participants. One participant demonstrated satisfactory performance in navigating the VE. Notably, it achieved the highest performance of 82.28 5.11% for MI and 97.72 4.55% for Motor Execution (ME) after just a single training session.
.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subject-specific feature extraction approach for a three-class motor imagery-based brain-computer interface enabling navigation in a virtual environment: open-access framework.\",\"authors\":\"Fardin Afdideh, Mohammad Bagher Shamsollahi\",\"doi\":\"10.1088/2057-1976/aded19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Brain-Computer Interface (BCI) is a system that aids individuals with disabilities to establish a novel communication channel between the brain and computer. Among various electrophysiological sources that can drive a BCI system, Motor Imagery (MI) facilitates more natural communication for users with motor disabilities, whereas electroencephalogram (EEG) is considered the most practical brain imaging modality. However, subject training is a critical aspect of such a type of BCI. One possible solution to address this challenge is to leverage the Virtual Reality (VR) technology. This study proposes a VR in MI- and EEG-based BCI (MI-EEG-BCI-VR) framework wherein users navigate a Virtual Environment (VE) following cue-based training, and employing a subject-specific feature extraction approach. The assigned task involves performing the left hand, right hand, and feet movement imagination to navigate from the start station to the end station as quickly as possible. The generated brain signals are collected using three bipolar EEG channels only. The proposed open-access MATLAB-based MI-EEG-BCI-VR framework was validated with eight healthy participants. One participant demonstrated satisfactory performance in navigating the VE. Notably, it achieved the highest performance of 82.28 5.11% for MI and 97.72 4.55% for Motor Execution (ME) after just a single training session.
.</p>\",\"PeriodicalId\":8896,\"journal\":{\"name\":\"Biomedical Physics & Engineering Express\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Physics & Engineering Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2057-1976/aded19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/aded19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Subject-specific feature extraction approach for a three-class motor imagery-based brain-computer interface enabling navigation in a virtual environment: open-access framework.
Brain-Computer Interface (BCI) is a system that aids individuals with disabilities to establish a novel communication channel between the brain and computer. Among various electrophysiological sources that can drive a BCI system, Motor Imagery (MI) facilitates more natural communication for users with motor disabilities, whereas electroencephalogram (EEG) is considered the most practical brain imaging modality. However, subject training is a critical aspect of such a type of BCI. One possible solution to address this challenge is to leverage the Virtual Reality (VR) technology. This study proposes a VR in MI- and EEG-based BCI (MI-EEG-BCI-VR) framework wherein users navigate a Virtual Environment (VE) following cue-based training, and employing a subject-specific feature extraction approach. The assigned task involves performing the left hand, right hand, and feet movement imagination to navigate from the start station to the end station as quickly as possible. The generated brain signals are collected using three bipolar EEG channels only. The proposed open-access MATLAB-based MI-EEG-BCI-VR framework was validated with eight healthy participants. One participant demonstrated satisfactory performance in navigating the VE. Notably, it achieved the highest performance of 82.28 5.11% for MI and 97.72 4.55% for Motor Execution (ME) after just a single training session.
.
期刊介绍:
BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.