{"title":"松果胆碱酯酶抑制及抗淀粉样肽诱导SH-SY5Y和BV-2细胞毒性的体外研究","authors":"Zeenath Banu, Nihar Ranjan Das","doi":"10.1007/s11064-025-04478-9","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a progressive neurodegenerative disorder primarily characterized by memory impairment and cognitive decline. Pathophysiological mechanisms contributing to AD include oxidative stress, increased acetylcholinesterase activity, neuroinflammation, and the accumulation of hyperphosphorylated tau proteins and amyloid-β (Aβ) plaques in the brain. The shortcomings of existing therapeutic approaches have necessitated the exploration of alternative treatment strategies. Elaeocarpus angustifolius Blume, traditionally used for neurological disorders, has been investigated for its neuroprotective potential through its alkaloid-rich fraction. This study evaluated the acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activities of E. angustifolius alkaloid-rich fraction (EAF) and its protective effects against Aβ<sub>1-42</sub>-induced cytotoxicity in human neuron-like SH-SY5Y cells and murine microglial BV-2 cells using the MTT assay. The results demonstrated that for AChE and BuChE, EAF showed significant inhibition with IC50 of 145.1 ± 4.782 µg/mL and 165.8 ± 1.10 µg/mL, respectively. In the MTT assay, EAF effectively mitigated Aβ<sub>1-42</sub>-induced cytotoxicity in a dose-dependent manner, with the highest dose (100 µg/mL) restoring viability from 67.91 to 75.31% in SH-SY5Y cells and from 60.29 to 76.01% in BV-2 cells. From these results, it is apparent that EAF has anticholinesterase and neuroprotective properties. However, further research on this may help decipher underlying mechanisms before establishing EAF as an effective alternative in treating AD.</p>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":"50 4","pages":"226"},"PeriodicalIF":3.8000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Vitro Assessment of Cholinesterase Inhibition and Neuroprotective Effects of Elaeocarpus angustifolius Blume Against Amyloid-Beta Peptide-Induced Toxicity in SH-SY5Y and BV-2 Cells.\",\"authors\":\"Zeenath Banu, Nihar Ranjan Das\",\"doi\":\"10.1007/s11064-025-04478-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's disease (AD) is a progressive neurodegenerative disorder primarily characterized by memory impairment and cognitive decline. Pathophysiological mechanisms contributing to AD include oxidative stress, increased acetylcholinesterase activity, neuroinflammation, and the accumulation of hyperphosphorylated tau proteins and amyloid-β (Aβ) plaques in the brain. The shortcomings of existing therapeutic approaches have necessitated the exploration of alternative treatment strategies. Elaeocarpus angustifolius Blume, traditionally used for neurological disorders, has been investigated for its neuroprotective potential through its alkaloid-rich fraction. This study evaluated the acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activities of E. angustifolius alkaloid-rich fraction (EAF) and its protective effects against Aβ<sub>1-42</sub>-induced cytotoxicity in human neuron-like SH-SY5Y cells and murine microglial BV-2 cells using the MTT assay. The results demonstrated that for AChE and BuChE, EAF showed significant inhibition with IC50 of 145.1 ± 4.782 µg/mL and 165.8 ± 1.10 µg/mL, respectively. In the MTT assay, EAF effectively mitigated Aβ<sub>1-42</sub>-induced cytotoxicity in a dose-dependent manner, with the highest dose (100 µg/mL) restoring viability from 67.91 to 75.31% in SH-SY5Y cells and from 60.29 to 76.01% in BV-2 cells. From these results, it is apparent that EAF has anticholinesterase and neuroprotective properties. However, further research on this may help decipher underlying mechanisms before establishing EAF as an effective alternative in treating AD.</p>\",\"PeriodicalId\":719,\"journal\":{\"name\":\"Neurochemical Research\",\"volume\":\"50 4\",\"pages\":\"226\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurochemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11064-025-04478-9\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11064-025-04478-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
In Vitro Assessment of Cholinesterase Inhibition and Neuroprotective Effects of Elaeocarpus angustifolius Blume Against Amyloid-Beta Peptide-Induced Toxicity in SH-SY5Y and BV-2 Cells.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder primarily characterized by memory impairment and cognitive decline. Pathophysiological mechanisms contributing to AD include oxidative stress, increased acetylcholinesterase activity, neuroinflammation, and the accumulation of hyperphosphorylated tau proteins and amyloid-β (Aβ) plaques in the brain. The shortcomings of existing therapeutic approaches have necessitated the exploration of alternative treatment strategies. Elaeocarpus angustifolius Blume, traditionally used for neurological disorders, has been investigated for its neuroprotective potential through its alkaloid-rich fraction. This study evaluated the acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activities of E. angustifolius alkaloid-rich fraction (EAF) and its protective effects against Aβ1-42-induced cytotoxicity in human neuron-like SH-SY5Y cells and murine microglial BV-2 cells using the MTT assay. The results demonstrated that for AChE and BuChE, EAF showed significant inhibition with IC50 of 145.1 ± 4.782 µg/mL and 165.8 ± 1.10 µg/mL, respectively. In the MTT assay, EAF effectively mitigated Aβ1-42-induced cytotoxicity in a dose-dependent manner, with the highest dose (100 µg/mL) restoring viability from 67.91 to 75.31% in SH-SY5Y cells and from 60.29 to 76.01% in BV-2 cells. From these results, it is apparent that EAF has anticholinesterase and neuroprotective properties. However, further research on this may help decipher underlying mechanisms before establishing EAF as an effective alternative in treating AD.
期刊介绍:
Neurochemical Research is devoted to the rapid publication of studies that use neurochemical methodology in research on nervous system structure and function. The journal publishes original reports of experimental and clinical research results, perceptive reviews of significant problem areas in the neurosciences, brief comments of a methodological or interpretive nature, and research summaries conducted by leading scientists whose works are not readily available in English.