Conor J Crawford, Greta Reintjes, Vipul Solanki, Manuel G Ricardo, Jens Harder, Rudolf Amann, Jan-Hendrik Hehemann, Peter H Seeberger
{"title":"微生物组中聚糖转化的活性跟踪研究。","authors":"Conor J Crawford, Greta Reintjes, Vipul Solanki, Manuel G Ricardo, Jens Harder, Rudolf Amann, Jan-Hendrik Hehemann, Peter H Seeberger","doi":"10.1021/jacs.5c07546","DOIUrl":null,"url":null,"abstract":"<p><p>Glycans shape microbiomes in the ocean and the gut, driving key steps in the global carbon cycle and human health. Yet, our ability to track microbial glycan turnover across microbiomes is limited, as identifying active degraders without prior genomic knowledge remains a key challenge. Here, we introduce an activity-based fluorescence resonance energy transfer (FRET) probe that enables direct visualization and quantification of glycan metabolism in complex microbial communities. As a proof of concept, we investigated α-mannan degradation, a prominent polysaccharide in algal blooms. Using automated glycan assembly, we synthesized a mannan hexasaccharide bearing a fluorescein-rhodamine FRET pair. The probe was validated using a recombinantly expressed <i>endo</i>-α-mannanase (GH76) from <i>Salegentibacter</i> sp. Hel_I_6. It was shown to function in cell lysates, pure cultures, and complex microbiomes (via plate assays and microscopy). This probe enabled spatiotemporal visualization of in situ α-mannan turnover in a marine microbiome. Glycan FRET probes are versatile tools for tracking glycan degradation across biological scales from single enzymes to microbiomes.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Activity-Based Tracking of Glycan Turnover in Microbiomes.\",\"authors\":\"Conor J Crawford, Greta Reintjes, Vipul Solanki, Manuel G Ricardo, Jens Harder, Rudolf Amann, Jan-Hendrik Hehemann, Peter H Seeberger\",\"doi\":\"10.1021/jacs.5c07546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glycans shape microbiomes in the ocean and the gut, driving key steps in the global carbon cycle and human health. Yet, our ability to track microbial glycan turnover across microbiomes is limited, as identifying active degraders without prior genomic knowledge remains a key challenge. Here, we introduce an activity-based fluorescence resonance energy transfer (FRET) probe that enables direct visualization and quantification of glycan metabolism in complex microbial communities. As a proof of concept, we investigated α-mannan degradation, a prominent polysaccharide in algal blooms. Using automated glycan assembly, we synthesized a mannan hexasaccharide bearing a fluorescein-rhodamine FRET pair. The probe was validated using a recombinantly expressed <i>endo</i>-α-mannanase (GH76) from <i>Salegentibacter</i> sp. Hel_I_6. It was shown to function in cell lysates, pure cultures, and complex microbiomes (via plate assays and microscopy). This probe enabled spatiotemporal visualization of in situ α-mannan turnover in a marine microbiome. Glycan FRET probes are versatile tools for tracking glycan degradation across biological scales from single enzymes to microbiomes.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.5c07546\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c07546","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Activity-Based Tracking of Glycan Turnover in Microbiomes.
Glycans shape microbiomes in the ocean and the gut, driving key steps in the global carbon cycle and human health. Yet, our ability to track microbial glycan turnover across microbiomes is limited, as identifying active degraders without prior genomic knowledge remains a key challenge. Here, we introduce an activity-based fluorescence resonance energy transfer (FRET) probe that enables direct visualization and quantification of glycan metabolism in complex microbial communities. As a proof of concept, we investigated α-mannan degradation, a prominent polysaccharide in algal blooms. Using automated glycan assembly, we synthesized a mannan hexasaccharide bearing a fluorescein-rhodamine FRET pair. The probe was validated using a recombinantly expressed endo-α-mannanase (GH76) from Salegentibacter sp. Hel_I_6. It was shown to function in cell lysates, pure cultures, and complex microbiomes (via plate assays and microscopy). This probe enabled spatiotemporal visualization of in situ α-mannan turnover in a marine microbiome. Glycan FRET probes are versatile tools for tracking glycan degradation across biological scales from single enzymes to microbiomes.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.