提高单原子位点对多巴胺和过氧化氢检测的敏感性

IF 12
Jiayi Chen, Wencai Liu, Lukang Gao, Xiaotong Li, Xinshuo Huang, Longwen Yan, Fanmao Liu, Yunuo Wang, Shufen Chen, Zhengjie Liu, Xi Xie, Zhiping Zeng, Hui-jiuan Chen, Shuang Huang
{"title":"提高单原子位点对多巴胺和过氧化氢检测的敏感性","authors":"Jiayi Chen,&nbsp;Wencai Liu,&nbsp;Lukang Gao,&nbsp;Xiaotong Li,&nbsp;Xinshuo Huang,&nbsp;Longwen Yan,&nbsp;Fanmao Liu,&nbsp;Yunuo Wang,&nbsp;Shufen Chen,&nbsp;Zhengjie Liu,&nbsp;Xi Xie,&nbsp;Zhiping Zeng,&nbsp;Hui-jiuan Chen,&nbsp;Shuang Huang","doi":"10.1002/cnl2.70027","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Single-atom (SA) sites have garnered significant attention in electrochemical applications due to their ability to leverage the unique electronic properties of isolated metal atoms, thereby enhancing interfacial charge transfer and detection sensitivity. Despite the limited exploration of electrochemical sensors utilizing SA, their integration into sensing electrodes holds great promise for improving the sensitivity and selectivity of bioactive molecule detection. In this study, SA modified electrodes were developed by anchoring transition metal atoms (Fe, Co, or Cu) onto nitrogen-doped graphene (N–C) via M–N–C coordination, synthesized through a ball milling–pyrolysis method. Electrochemical impedance spectroscopy measurements demonstrated a significant reduction in electrochemical impedance for Fe, Co, and Cu SA electrodes, indicating an enhanced electron transfer rate at the sensor interface. To evaluate the electrochemical sensing performance of SA-modified electrodes, dopamine (DA) and hydrogen peroxide (H₂O₂)—two biologically important molecules—were selected as representative analytes. Chronoamperometry revealed that Fe SA exhibited an enhanced sensitivity toward DA, reaching 0.02 A/µM, attributed to the unique electronic structure and catalytic properties of Fe sites, whereas Co SA and Cu SA did not show a notable improvement in DA detection sensitivity compared to the N–C electrode (0.01 A/µM). In contrast, Fe, Co, and Cu SA electrodes demonstrated improved sensitivity for H₂O₂ detection, achieving 0.35, 0.28, and 0.35 A/mM, respectively, surpassing the performance of the N–C electrode (0.076 A/mM). Density functional theory calculations of DA oxidation kinetics demonstrated that Fe–N site facilitated the adsorption and conversion of OH, thereby improving electrochemical response. These findings highlight the potential of SA as an effective electrode modification strategy for advancing electrochemical sensing technologies and enabling highly sensitive biomolecular detection.</p></div>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"4 4","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.70027","citationCount":"0","resultStr":"{\"title\":\"Boosted Sensitivity of Single-Atom Sites for Dopamine and Hydrogen Peroxide Detection\",\"authors\":\"Jiayi Chen,&nbsp;Wencai Liu,&nbsp;Lukang Gao,&nbsp;Xiaotong Li,&nbsp;Xinshuo Huang,&nbsp;Longwen Yan,&nbsp;Fanmao Liu,&nbsp;Yunuo Wang,&nbsp;Shufen Chen,&nbsp;Zhengjie Liu,&nbsp;Xi Xie,&nbsp;Zhiping Zeng,&nbsp;Hui-jiuan Chen,&nbsp;Shuang Huang\",\"doi\":\"10.1002/cnl2.70027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Single-atom (SA) sites have garnered significant attention in electrochemical applications due to their ability to leverage the unique electronic properties of isolated metal atoms, thereby enhancing interfacial charge transfer and detection sensitivity. Despite the limited exploration of electrochemical sensors utilizing SA, their integration into sensing electrodes holds great promise for improving the sensitivity and selectivity of bioactive molecule detection. In this study, SA modified electrodes were developed by anchoring transition metal atoms (Fe, Co, or Cu) onto nitrogen-doped graphene (N–C) via M–N–C coordination, synthesized through a ball milling–pyrolysis method. Electrochemical impedance spectroscopy measurements demonstrated a significant reduction in electrochemical impedance for Fe, Co, and Cu SA electrodes, indicating an enhanced electron transfer rate at the sensor interface. To evaluate the electrochemical sensing performance of SA-modified electrodes, dopamine (DA) and hydrogen peroxide (H₂O₂)—two biologically important molecules—were selected as representative analytes. Chronoamperometry revealed that Fe SA exhibited an enhanced sensitivity toward DA, reaching 0.02 A/µM, attributed to the unique electronic structure and catalytic properties of Fe sites, whereas Co SA and Cu SA did not show a notable improvement in DA detection sensitivity compared to the N–C electrode (0.01 A/µM). In contrast, Fe, Co, and Cu SA electrodes demonstrated improved sensitivity for H₂O₂ detection, achieving 0.35, 0.28, and 0.35 A/mM, respectively, surpassing the performance of the N–C electrode (0.076 A/mM). Density functional theory calculations of DA oxidation kinetics demonstrated that Fe–N site facilitated the adsorption and conversion of OH, thereby improving electrochemical response. These findings highlight the potential of SA as an effective electrode modification strategy for advancing electrochemical sensing technologies and enabling highly sensitive biomolecular detection.</p></div>\",\"PeriodicalId\":100214,\"journal\":{\"name\":\"Carbon Neutralization\",\"volume\":\"4 4\",\"pages\":\"\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.70027\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Neutralization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.70027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.70027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

单原子(SA)位点在电化学应用中引起了极大的关注,因为它们能够利用孤立金属原子的独特电子特性,从而增强界面电荷转移和检测灵敏度。尽管利用SA的电化学传感器的探索有限,但将其集成到传感电极中对于提高生物活性分子检测的灵敏度和选择性具有很大的希望。在本研究中,通过M-N-C配位将过渡金属原子(Fe, Co或Cu)锚定在氮掺杂石墨烯(N-C)上,通过球磨-热解法合成SA修饰电极。电化学阻抗谱测量表明,Fe、Co和Cu SA电极的电化学阻抗显著降低,表明传感器界面的电子传递速率增强。为了评价sa修饰电极的电化学传感性能,选择了多巴胺(DA)和过氧化氢(h2o2)这两种重要的生物学分子作为代表性分析物。计时电流测定表明,由于Fe电极独特的电子结构和催化特性,Fe SA对DA的检测灵敏度提高到0.02 A/µM,而Co SA和Cu SA对DA的检测灵敏度与N-C电极(0.01 A/µM)相比没有显著提高。相比之下,Fe, Co和Cu SA电极对H₂O₂的检测灵敏度提高,分别达到0.35,0.28和0.35 A/mM,超过了N-C电极的性能(0.076 A/mM)。DA氧化动力学的密度泛函理论计算表明,Fe-N位点促进了OH的吸附和转化,从而改善了电化学响应。这些发现突出了SA作为一种有效的电极修饰策略的潜力,可以推进电化学传感技术和实现高灵敏度的生物分子检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boosted Sensitivity of Single-Atom Sites for Dopamine and Hydrogen Peroxide Detection

Single-atom (SA) sites have garnered significant attention in electrochemical applications due to their ability to leverage the unique electronic properties of isolated metal atoms, thereby enhancing interfacial charge transfer and detection sensitivity. Despite the limited exploration of electrochemical sensors utilizing SA, their integration into sensing electrodes holds great promise for improving the sensitivity and selectivity of bioactive molecule detection. In this study, SA modified electrodes were developed by anchoring transition metal atoms (Fe, Co, or Cu) onto nitrogen-doped graphene (N–C) via M–N–C coordination, synthesized through a ball milling–pyrolysis method. Electrochemical impedance spectroscopy measurements demonstrated a significant reduction in electrochemical impedance for Fe, Co, and Cu SA electrodes, indicating an enhanced electron transfer rate at the sensor interface. To evaluate the electrochemical sensing performance of SA-modified electrodes, dopamine (DA) and hydrogen peroxide (H₂O₂)—two biologically important molecules—were selected as representative analytes. Chronoamperometry revealed that Fe SA exhibited an enhanced sensitivity toward DA, reaching 0.02 A/µM, attributed to the unique electronic structure and catalytic properties of Fe sites, whereas Co SA and Cu SA did not show a notable improvement in DA detection sensitivity compared to the N–C electrode (0.01 A/µM). In contrast, Fe, Co, and Cu SA electrodes demonstrated improved sensitivity for H₂O₂ detection, achieving 0.35, 0.28, and 0.35 A/mM, respectively, surpassing the performance of the N–C electrode (0.076 A/mM). Density functional theory calculations of DA oxidation kinetics demonstrated that Fe–N site facilitated the adsorption and conversion of OH, thereby improving electrochemical response. These findings highlight the potential of SA as an effective electrode modification strategy for advancing electrochemical sensing technologies and enabling highly sensitive biomolecular detection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信