Sixu Wang, Jiaqi Zheng, Xiaofei Zhang, Meishan Zhao, Jun Li, Ming Su, Wei Qiu
{"title":"全基因组CRISPR-Cas9基因敲除筛选确定顺铂诱导肾近端小管上皮细胞细胞毒性的基因","authors":"Sixu Wang, Jiaqi Zheng, Xiaofei Zhang, Meishan Zhao, Jun Li, Ming Su, Wei Qiu","doi":"10.1096/fj.202402401RR","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Cisplatin is widely used as a first-line chemotherapy drug for various cancers. However, cisplatin-induced nephrotoxicity (CIN) greatly restricts its application. Renal proximal tubular epithelial cells (RPTECs) can be extensively damaged during CIN. However, it still lacks an ideal method to prevent CIN, because the mechanism and therapeutic targets of CIN remain largely unclear. In the present study, we used a genome-scale CRISPR-Cas9 knock-out method to functionally screen key genes of cisplatin-induced RPTEC injury. We found 815 genes significantly enriched (<i>p</i> < 0.05) from positive selection screening strategy, which may synergistically enhance cisplatin cytotoxicity in RPTECs. Importantly, we identified ERAP2 as a novel molecule associated with CIN. We found that the expression of ERAP2 in RPTECs was significantly up-regulated by cisplatin. Data from CCK-8 assay and flow cytometry showed that inhibition of ERAP2 alleviated cisplatin-induced RPTEC injury. Furthermore, RNA-seq and qPCR results revealed that three necroptosis-associated genes, <i>PLA2G4C</i>, <i>HIST1H2AC</i>, and <i>HIST1H2AM</i>, were downregulated following ERAP2 inhibition, suggesting that ERAP2 may be a novel therapeutic target of CIN through the modulation of necroptosis pathway.</p>\n </div>","PeriodicalId":50455,"journal":{"name":"The FASEB Journal","volume":"39 13","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genome-Wide CRISPR-Cas9 Knockout Screening Identifies Genes Modulating Cisplatin-Induced Cytotoxicity in Renal Proximal Tubule Epithelial Cells\",\"authors\":\"Sixu Wang, Jiaqi Zheng, Xiaofei Zhang, Meishan Zhao, Jun Li, Ming Su, Wei Qiu\",\"doi\":\"10.1096/fj.202402401RR\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Cisplatin is widely used as a first-line chemotherapy drug for various cancers. However, cisplatin-induced nephrotoxicity (CIN) greatly restricts its application. Renal proximal tubular epithelial cells (RPTECs) can be extensively damaged during CIN. However, it still lacks an ideal method to prevent CIN, because the mechanism and therapeutic targets of CIN remain largely unclear. In the present study, we used a genome-scale CRISPR-Cas9 knock-out method to functionally screen key genes of cisplatin-induced RPTEC injury. We found 815 genes significantly enriched (<i>p</i> < 0.05) from positive selection screening strategy, which may synergistically enhance cisplatin cytotoxicity in RPTECs. Importantly, we identified ERAP2 as a novel molecule associated with CIN. We found that the expression of ERAP2 in RPTECs was significantly up-regulated by cisplatin. Data from CCK-8 assay and flow cytometry showed that inhibition of ERAP2 alleviated cisplatin-induced RPTEC injury. Furthermore, RNA-seq and qPCR results revealed that three necroptosis-associated genes, <i>PLA2G4C</i>, <i>HIST1H2AC</i>, and <i>HIST1H2AM</i>, were downregulated following ERAP2 inhibition, suggesting that ERAP2 may be a novel therapeutic target of CIN through the modulation of necroptosis pathway.</p>\\n </div>\",\"PeriodicalId\":50455,\"journal\":{\"name\":\"The FASEB Journal\",\"volume\":\"39 13\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The FASEB Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1096/fj.202402401RR\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FASEB Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1096/fj.202402401RR","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Cisplatin is widely used as a first-line chemotherapy drug for various cancers. However, cisplatin-induced nephrotoxicity (CIN) greatly restricts its application. Renal proximal tubular epithelial cells (RPTECs) can be extensively damaged during CIN. However, it still lacks an ideal method to prevent CIN, because the mechanism and therapeutic targets of CIN remain largely unclear. In the present study, we used a genome-scale CRISPR-Cas9 knock-out method to functionally screen key genes of cisplatin-induced RPTEC injury. We found 815 genes significantly enriched (p < 0.05) from positive selection screening strategy, which may synergistically enhance cisplatin cytotoxicity in RPTECs. Importantly, we identified ERAP2 as a novel molecule associated with CIN. We found that the expression of ERAP2 in RPTECs was significantly up-regulated by cisplatin. Data from CCK-8 assay and flow cytometry showed that inhibition of ERAP2 alleviated cisplatin-induced RPTEC injury. Furthermore, RNA-seq and qPCR results revealed that three necroptosis-associated genes, PLA2G4C, HIST1H2AC, and HIST1H2AM, were downregulated following ERAP2 inhibition, suggesting that ERAP2 may be a novel therapeutic target of CIN through the modulation of necroptosis pathway.
期刊介绍:
The FASEB Journal publishes international, transdisciplinary research covering all fields of biology at every level of organization: atomic, molecular, cell, tissue, organ, organismic and population. While the journal strives to include research that cuts across the biological sciences, it also considers submissions that lie within one field, but may have implications for other fields as well. The journal seeks to publish basic and translational research, but also welcomes reports of pre-clinical and early clinical research. In addition to research, review, and hypothesis submissions, The FASEB Journal also seeks perspectives, commentaries, book reviews, and similar content related to the life sciences in its Up Front section.