超越肿瘤:通过谷氨酰胺代谢和创新药物输送增强胰腺癌治疗

IF 3.6 3区 生物学 Q3 CELL BIOLOGY
Min Su, Huan Qin, Jie Shen, Hao An, Yu Cao
{"title":"超越肿瘤:通过谷氨酰胺代谢和创新药物输送增强胰腺癌治疗","authors":"Min Su,&nbsp;Huan Qin,&nbsp;Jie Shen,&nbsp;Hao An,&nbsp;Yu Cao","doi":"10.1002/ccs3.70033","DOIUrl":null,"url":null,"abstract":"<p>Pancreatic ductal adenocarcinoma (PDAC) depends a lot on how it uses glutamine to grow quickly and stay alive. Oncogenic drivers such as KRAS, c-Myc, and HIF-1α increase how much glutamine gets taken up and broken down. Meanwhile, the bacteria in the gut and tumor itself also affect how much glutamine is available throughout the body and near the tumor. This impacts both how the tumor grows and how the immune system can detect and respond to it. Multiple strategies have emerged to disrupt this dependence: glutamine antagonists (DON and its prodrugs DRP-104, JHU-083), small-molecule glutaminase inhibitors (CB-839), antibody–drug conjugates targeting the ASCT2 transporter, and combination regimens pairing glutamine blockade with immune checkpoint inhibitors. Nanoparticle formulations—including pH-sensitive and PEGylated liposomes co-delivering DON and gemcitabine—enable targeted delivery and reduce off-target toxicity. Single-agent treatments do not work so well because the cells can adapt. They boost enzymes such as asparagine synthetase and increase how they burn fatty acids to make up for the lack of glutamine. To overcome these escape routes, future interventions must concurrently target compensatory pathways and integrate biomarker-driven patient selection. Combining glutamine-targeted agents with inhibitors of asparagine synthesis or lipid oxidation, guided by multi-omics profiling, promises a more durable therapeutic benefit and lays the groundwork for personalized treatment of PDAC.</p>","PeriodicalId":15226,"journal":{"name":"Journal of Cell Communication and Signaling","volume":"19 3","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ccs3.70033","citationCount":"0","resultStr":"{\"title\":\"Beyond the tumor: Enhancing pancreatic cancer therapy through glutamine metabolism and innovative drug delivery\",\"authors\":\"Min Su,&nbsp;Huan Qin,&nbsp;Jie Shen,&nbsp;Hao An,&nbsp;Yu Cao\",\"doi\":\"10.1002/ccs3.70033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Pancreatic ductal adenocarcinoma (PDAC) depends a lot on how it uses glutamine to grow quickly and stay alive. Oncogenic drivers such as KRAS, c-Myc, and HIF-1α increase how much glutamine gets taken up and broken down. Meanwhile, the bacteria in the gut and tumor itself also affect how much glutamine is available throughout the body and near the tumor. This impacts both how the tumor grows and how the immune system can detect and respond to it. Multiple strategies have emerged to disrupt this dependence: glutamine antagonists (DON and its prodrugs DRP-104, JHU-083), small-molecule glutaminase inhibitors (CB-839), antibody–drug conjugates targeting the ASCT2 transporter, and combination regimens pairing glutamine blockade with immune checkpoint inhibitors. Nanoparticle formulations—including pH-sensitive and PEGylated liposomes co-delivering DON and gemcitabine—enable targeted delivery and reduce off-target toxicity. Single-agent treatments do not work so well because the cells can adapt. They boost enzymes such as asparagine synthetase and increase how they burn fatty acids to make up for the lack of glutamine. To overcome these escape routes, future interventions must concurrently target compensatory pathways and integrate biomarker-driven patient selection. Combining glutamine-targeted agents with inhibitors of asparagine synthesis or lipid oxidation, guided by multi-omics profiling, promises a more durable therapeutic benefit and lays the groundwork for personalized treatment of PDAC.</p>\",\"PeriodicalId\":15226,\"journal\":{\"name\":\"Journal of Cell Communication and Signaling\",\"volume\":\"19 3\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ccs3.70033\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cell Communication and Signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ccs3.70033\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ccs3.70033","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

胰腺导管腺癌(PDAC)很大程度上取决于它如何利用谷氨酰胺快速生长和存活。致癌驱动因子如KRAS、c-Myc和HIF-1α增加了谷氨酰胺被吸收和分解的量。同时,肠道内的细菌和肿瘤本身也会影响谷氨酰胺在全身和肿瘤附近的可用量。这既会影响肿瘤的生长方式,也会影响免疫系统对肿瘤的检测和反应。已经出现了多种策略来破坏这种依赖性:谷氨酰胺拮抗剂(DON及其前药DRP-104, JHU-083),小分子谷氨酰胺酶抑制剂(CB-839),靶向ASCT2转运体的抗体-药物偶联物,以及将谷氨酰胺阻断与免疫检查点抑制剂配对的联合方案。纳米颗粒配方-包括ph敏感和聚乙二醇化脂质体共同递送DON和吉西他滨-实现靶向递送并减少脱靶毒性。单剂治疗效果不太好,因为细胞可以适应。它们能提高天冬酰胺合成酶等酶的活性,并增加脂肪酸的燃烧,以弥补谷氨酰胺的缺乏。为了克服这些逃避途径,未来的干预措施必须同时针对代偿途径并整合生物标志物驱动的患者选择。在多组学分析的指导下,结合谷氨酰胺靶向药物与天冬酰胺合成或脂质氧化抑制剂,有望获得更持久的治疗效果,并为PDAC的个性化治疗奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Beyond the tumor: Enhancing pancreatic cancer therapy through glutamine metabolism and innovative drug delivery

Beyond the tumor: Enhancing pancreatic cancer therapy through glutamine metabolism and innovative drug delivery

Pancreatic ductal adenocarcinoma (PDAC) depends a lot on how it uses glutamine to grow quickly and stay alive. Oncogenic drivers such as KRAS, c-Myc, and HIF-1α increase how much glutamine gets taken up and broken down. Meanwhile, the bacteria in the gut and tumor itself also affect how much glutamine is available throughout the body and near the tumor. This impacts both how the tumor grows and how the immune system can detect and respond to it. Multiple strategies have emerged to disrupt this dependence: glutamine antagonists (DON and its prodrugs DRP-104, JHU-083), small-molecule glutaminase inhibitors (CB-839), antibody–drug conjugates targeting the ASCT2 transporter, and combination regimens pairing glutamine blockade with immune checkpoint inhibitors. Nanoparticle formulations—including pH-sensitive and PEGylated liposomes co-delivering DON and gemcitabine—enable targeted delivery and reduce off-target toxicity. Single-agent treatments do not work so well because the cells can adapt. They boost enzymes such as asparagine synthetase and increase how they burn fatty acids to make up for the lack of glutamine. To overcome these escape routes, future interventions must concurrently target compensatory pathways and integrate biomarker-driven patient selection. Combining glutamine-targeted agents with inhibitors of asparagine synthesis or lipid oxidation, guided by multi-omics profiling, promises a more durable therapeutic benefit and lays the groundwork for personalized treatment of PDAC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
4.90%
发文量
40
期刊介绍: The Journal of Cell Communication and Signaling provides a forum for fundamental and translational research. In particular, it publishes papers discussing intercellular and intracellular signaling pathways that are particularly important to understand how cells interact with each other and with the surrounding environment, and how cellular behavior contributes to pathological states. JCCS encourages the submission of research manuscripts, timely reviews and short commentaries discussing recent publications, key developments and controversies. Research manuscripts can be published under two different sections : In the Pathology and Translational Research Section (Section Editor Andrew Leask) , manuscripts report original research dealing with celllular aspects of normal and pathological signaling and communication, with a particular interest in translational research. In the Molecular Signaling Section (Section Editor Satoshi Kubota) manuscripts report original signaling research performed at molecular levels with a particular interest in the functions of intracellular and membrane components involved in cell signaling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信