氢键的轨道相互作用:从化学键重叠模型的视角

IF 4.8 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Rodolfo A. Santos, Carlos V. Santos- Jr., Eduardo C. Aguiar, Albano N. Carneiro Neto, Renaldo T. Moura Jr.
{"title":"氢键的轨道相互作用:从化学键重叠模型的视角","authors":"Rodolfo A. Santos,&nbsp;Carlos V. Santos- Jr.,&nbsp;Eduardo C. Aguiar,&nbsp;Albano N. Carneiro Neto,&nbsp;Renaldo T. Moura Jr.","doi":"10.1002/jcc.70166","DOIUrl":null,"url":null,"abstract":"<p>Hydrogen bonds are essential chemical interactions that occur in various systems, playing a critical role in determining molecular structures, dynamics, and reactivity. While quantum chemical methods such as Quantum Theory of Atoms in Molecules (QTAIM) and Natural Bond Orbital (NBO) analyses have traditionally been used to explore these interactions, this work introduces the Chemical Bond Overlap (OP) Model and its topological (TOP) descriptors as a complementary approach for analyzing orbital overlap contributions in hydrogen bonds. The study reports a systematic investigation of a series of hydrogen-bonded systems (a total of 25 systems), demonstrating how electron-donating and electron-withdrawing substituents influence bond characteristics. The results reveal that OP/TOP effectively captures the effects of electronic perturbations, offering insights into the <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation>$$ n $$</annotation>\n </semantics></math>(X) <span></span><math>\n <semantics>\n <mrow>\n <mo>→</mo>\n </mrow>\n <annotation>$$ \\to $$</annotation>\n </semantics></math> <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>σ</mi>\n </mrow>\n <mrow>\n <mo>∗</mo>\n </mrow>\n </msup>\n <mo>(</mo>\n <msup>\n <mrow>\n <mtext>X</mtext>\n </mrow>\n <mrow>\n <mo>′</mo>\n </mrow>\n </msup>\n <mo>−</mo>\n <mtext>H</mtext>\n <mo>)</mo>\n </mrow>\n <annotation>$$ {\\sigma}^{\\ast}\\left({\\mathrm{X}}^{\\prime }-\\mathrm{H}\\right) $$</annotation>\n </semantics></math> interactions and serving as a complementary approach to QTAIM, NBO, and local vibrational modes theory (LVM). Notably, for nonconventional <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mrow>\n <mtext>CH</mtext>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n <mtext>N</mtext>\n <mtext>⋯</mtext>\n <mtext>H</mtext>\n <mtext>⋯</mtext>\n <msub>\n <mrow>\n <mtext>CX</mtext>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\left({\\mathrm{CH}}_3\\right)}_3\\mathrm{N}\\cdots \\mathrm{H}\\cdots {\\mathrm{CX}}_3 $$</annotation>\n </semantics></math> hydrogen bonds (<span></span><math>\n <semantics>\n <mrow>\n <mtext>X</mtext>\n <mo>=</mo>\n <mtext>F</mtext>\n <mo>,</mo>\n <mtext>Cl</mtext>\n </mrow>\n <annotation>$$ \\mathrm{X}=\\mathrm{F},\\mathrm{Cl} $$</annotation>\n </semantics></math>), the OP/TOP model, consistent with LVM, correctly captures the expected increase in interaction strength for <span></span><math>\n <semantics>\n <mrow>\n <mtext>X</mtext>\n <mo>=</mo>\n <mtext>Cl</mtext>\n </mrow>\n <annotation>$$ \\mathrm{X}=\\mathrm{Cl} $$</annotation>\n </semantics></math>. This agrees with the higher electrophilicity of the hydrogen in <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>HCCl</mtext>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{HCCl}}_3 $$</annotation>\n </semantics></math>, as indicated by its lower pKa and weaker CH bond dissociation energy. Additionally, the inclusion of electron-donating groups significantly enhances lone pair <span></span><math>\n <semantics>\n <mrow>\n <mo>→</mo>\n </mrow>\n <annotation>$$ \\to $$</annotation>\n </semantics></math> antibonding orbital interactions, increasing NBO <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>σ</mi>\n </mrow>\n <mrow>\n <mo>∗</mo>\n </mrow>\n </msup>\n <mo>(</mo>\n <msup>\n <mrow>\n <mtext>X</mtext>\n </mrow>\n <mrow>\n <mo>′</mo>\n </mrow>\n </msup>\n <mo>−</mo>\n <mtext>H</mtext>\n <mo>)</mo>\n </mrow>\n <annotation>$$ {\\sigma}^{\\ast}\\left({\\mathrm{X}}^{\\prime }-\\mathrm{H}\\right) $$</annotation>\n </semantics></math> occupancy and electron density at the hydrogen bond critical point (BCP), as reflected by a decrease in <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>H</mtext>\n </mrow>\n <mrow>\n <mtext>BCP</mtext>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{H}}_{\\mathrm{BCP}} $$</annotation>\n </semantics></math> and an increase in <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>ρ</mi>\n </mrow>\n <mrow>\n <mtext>BCP</mtext>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\rho}_{\\mathrm{BCP}} $$</annotation>\n </semantics></math>. This behavior consistently indicates hydrogen bond strengthening across QTAIM, NBO, and OP/TOP descriptors. Calculations were performed using the <span></span><math>\n <semantics>\n <mrow>\n <mi>ω</mi>\n </mrow>\n <annotation>$$ \\omega $$</annotation>\n </semantics></math>B97X-D/def2-TZVP level of theory. The findings establish OP/TOP as a powerful tool for computational chemistry, particularly in the study of weak intermolecular interactions and molecular design.</p>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"46 19","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcc.70166","citationCount":"0","resultStr":"{\"title\":\"Orbital Interactions in Hydrogen Bonds: A Perspective From the Chemical Bond Overlap Model\",\"authors\":\"Rodolfo A. Santos,&nbsp;Carlos V. Santos- Jr.,&nbsp;Eduardo C. Aguiar,&nbsp;Albano N. Carneiro Neto,&nbsp;Renaldo T. Moura Jr.\",\"doi\":\"10.1002/jcc.70166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hydrogen bonds are essential chemical interactions that occur in various systems, playing a critical role in determining molecular structures, dynamics, and reactivity. While quantum chemical methods such as Quantum Theory of Atoms in Molecules (QTAIM) and Natural Bond Orbital (NBO) analyses have traditionally been used to explore these interactions, this work introduces the Chemical Bond Overlap (OP) Model and its topological (TOP) descriptors as a complementary approach for analyzing orbital overlap contributions in hydrogen bonds. The study reports a systematic investigation of a series of hydrogen-bonded systems (a total of 25 systems), demonstrating how electron-donating and electron-withdrawing substituents influence bond characteristics. The results reveal that OP/TOP effectively captures the effects of electronic perturbations, offering insights into the <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation>$$ n $$</annotation>\\n </semantics></math>(X) <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>→</mo>\\n </mrow>\\n <annotation>$$ \\\\to $$</annotation>\\n </semantics></math> <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>σ</mi>\\n </mrow>\\n <mrow>\\n <mo>∗</mo>\\n </mrow>\\n </msup>\\n <mo>(</mo>\\n <msup>\\n <mrow>\\n <mtext>X</mtext>\\n </mrow>\\n <mrow>\\n <mo>′</mo>\\n </mrow>\\n </msup>\\n <mo>−</mo>\\n <mtext>H</mtext>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$$ {\\\\sigma}^{\\\\ast}\\\\left({\\\\mathrm{X}}^{\\\\prime }-\\\\mathrm{H}\\\\right) $$</annotation>\\n </semantics></math> interactions and serving as a complementary approach to QTAIM, NBO, and local vibrational modes theory (LVM). Notably, for nonconventional <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mrow>\\n <mtext>CH</mtext>\\n </mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n <mtext>N</mtext>\\n <mtext>⋯</mtext>\\n <mtext>H</mtext>\\n <mtext>⋯</mtext>\\n <msub>\\n <mrow>\\n <mtext>CX</mtext>\\n </mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\left({\\\\mathrm{CH}}_3\\\\right)}_3\\\\mathrm{N}\\\\cdots \\\\mathrm{H}\\\\cdots {\\\\mathrm{CX}}_3 $$</annotation>\\n </semantics></math> hydrogen bonds (<span></span><math>\\n <semantics>\\n <mrow>\\n <mtext>X</mtext>\\n <mo>=</mo>\\n <mtext>F</mtext>\\n <mo>,</mo>\\n <mtext>Cl</mtext>\\n </mrow>\\n <annotation>$$ \\\\mathrm{X}=\\\\mathrm{F},\\\\mathrm{Cl} $$</annotation>\\n </semantics></math>), the OP/TOP model, consistent with LVM, correctly captures the expected increase in interaction strength for <span></span><math>\\n <semantics>\\n <mrow>\\n <mtext>X</mtext>\\n <mo>=</mo>\\n <mtext>Cl</mtext>\\n </mrow>\\n <annotation>$$ \\\\mathrm{X}=\\\\mathrm{Cl} $$</annotation>\\n </semantics></math>. This agrees with the higher electrophilicity of the hydrogen in <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>HCCl</mtext>\\n </mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{HCCl}}_3 $$</annotation>\\n </semantics></math>, as indicated by its lower pKa and weaker CH bond dissociation energy. Additionally, the inclusion of electron-donating groups significantly enhances lone pair <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>→</mo>\\n </mrow>\\n <annotation>$$ \\\\to $$</annotation>\\n </semantics></math> antibonding orbital interactions, increasing NBO <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>σ</mi>\\n </mrow>\\n <mrow>\\n <mo>∗</mo>\\n </mrow>\\n </msup>\\n <mo>(</mo>\\n <msup>\\n <mrow>\\n <mtext>X</mtext>\\n </mrow>\\n <mrow>\\n <mo>′</mo>\\n </mrow>\\n </msup>\\n <mo>−</mo>\\n <mtext>H</mtext>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$$ {\\\\sigma}^{\\\\ast}\\\\left({\\\\mathrm{X}}^{\\\\prime }-\\\\mathrm{H}\\\\right) $$</annotation>\\n </semantics></math> occupancy and electron density at the hydrogen bond critical point (BCP), as reflected by a decrease in <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>H</mtext>\\n </mrow>\\n <mrow>\\n <mtext>BCP</mtext>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{H}}_{\\\\mathrm{BCP}} $$</annotation>\\n </semantics></math> and an increase in <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>ρ</mi>\\n </mrow>\\n <mrow>\\n <mtext>BCP</mtext>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\rho}_{\\\\mathrm{BCP}} $$</annotation>\\n </semantics></math>. This behavior consistently indicates hydrogen bond strengthening across QTAIM, NBO, and OP/TOP descriptors. Calculations were performed using the <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ω</mi>\\n </mrow>\\n <annotation>$$ \\\\omega $$</annotation>\\n </semantics></math>B97X-D/def2-TZVP level of theory. The findings establish OP/TOP as a powerful tool for computational chemistry, particularly in the study of weak intermolecular interactions and molecular design.</p>\",\"PeriodicalId\":188,\"journal\":{\"name\":\"Journal of Computational Chemistry\",\"volume\":\"46 19\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcc.70166\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70166\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70166","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

氢键是发生在各种系统中的基本化学相互作用,在决定分子结构、动力学和反应性方面起着关键作用。虽然量子化学方法,如分子原子量子理论(QTAIM)和自然键轨道(NBO)分析传统上被用于探索这些相互作用,但这项工作引入了化学键重叠(OP)模型及其拓扑(TOP)描述符,作为分析氢键轨道重叠贡献的补充方法。该研究报告了对一系列氢键系统(共25个系统)的系统调查,展示了给电子和吸电子取代基如何影响键特性。结果表明,OP/TOP有效地捕获了电子扰动的影响,提供了对n $$ n $$ (X)→$$ \to $$ σ∗的见解(X′−H) $$ {\sigma}^{\ast}\left({\mathrm{X}}^{\prime }-\mathrm{H}\right) $$相互作用,并作为QTAIM, NBO和局部振动模态理论(LVM)的补充方法。值得注意的是,为非常规(ch3) 3N, H, cx3 $$ {\left({\mathrm{CH}}_3\right)}_3\mathrm{N}\cdots \mathrm{H}\cdots {\mathrm{CX}}_3 $$氢键(X = F, Cl $$ \mathrm{X}=\mathrm{F},\mathrm{Cl} $$), OP/TOP模型与LVM一致,正确地捕获了X = Cl $$ \mathrm{X}=\mathrm{Cl} $$时相互作用强度的预期增加。这与HCCl 3 $$ {\mathrm{HCCl}}_3 $$中氢的高亲电性一致,这可以从其较低的pKa和较弱的CH键离解能看出。 此外,给电子基团的加入显著增强了孤对→$$ \to $$反键轨道相互作用,增加NBO σ * (X′−)H) $$ {\sigma}^{\ast}\left({\mathrm{X}}^{\prime }-\mathrm{H}\right) $$氢键临界点(BCP)的占有率和电子密度;反映在H BCP的降低$$ {\mathrm{H}}_{\mathrm{BCP}} $$和ρ的增加BCP $$ {\rho}_{\mathrm{BCP}} $$。这种行为一致表明氢键在QTAIM、NBO和OP/TOP描述符中得到加强。计算采用ω $$ \omega $$ B97X-D/def2-TZVP理论水平。这些发现使OP/TOP成为计算化学的强大工具,特别是在弱分子间相互作用和分子设计的研究中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Orbital Interactions in Hydrogen Bonds: A Perspective From the Chemical Bond Overlap Model

Orbital Interactions in Hydrogen Bonds: A Perspective From the Chemical Bond Overlap Model

Hydrogen bonds are essential chemical interactions that occur in various systems, playing a critical role in determining molecular structures, dynamics, and reactivity. While quantum chemical methods such as Quantum Theory of Atoms in Molecules (QTAIM) and Natural Bond Orbital (NBO) analyses have traditionally been used to explore these interactions, this work introduces the Chemical Bond Overlap (OP) Model and its topological (TOP) descriptors as a complementary approach for analyzing orbital overlap contributions in hydrogen bonds. The study reports a systematic investigation of a series of hydrogen-bonded systems (a total of 25 systems), demonstrating how electron-donating and electron-withdrawing substituents influence bond characteristics. The results reveal that OP/TOP effectively captures the effects of electronic perturbations, offering insights into the n $$ n $$ (X) $$ \to $$ σ ( X H ) $$ {\sigma}^{\ast}\left({\mathrm{X}}^{\prime }-\mathrm{H}\right) $$ interactions and serving as a complementary approach to QTAIM, NBO, and local vibrational modes theory (LVM). Notably, for nonconventional ( CH 3 ) 3 N H CX 3 $$ {\left({\mathrm{CH}}_3\right)}_3\mathrm{N}\cdots \mathrm{H}\cdots {\mathrm{CX}}_3 $$ hydrogen bonds ( X = F , Cl $$ \mathrm{X}=\mathrm{F},\mathrm{Cl} $$ ), the OP/TOP model, consistent with LVM, correctly captures the expected increase in interaction strength for X = Cl $$ \mathrm{X}=\mathrm{Cl} $$ . This agrees with the higher electrophilicity of the hydrogen in HCCl 3 $$ {\mathrm{HCCl}}_3 $$ , as indicated by its lower pKa and weaker CH bond dissociation energy. Additionally, the inclusion of electron-donating groups significantly enhances lone pair $$ \to $$ antibonding orbital interactions, increasing NBO σ ( X H ) $$ {\sigma}^{\ast}\left({\mathrm{X}}^{\prime }-\mathrm{H}\right) $$ occupancy and electron density at the hydrogen bond critical point (BCP), as reflected by a decrease in H BCP $$ {\mathrm{H}}_{\mathrm{BCP}} $$ and an increase in ρ BCP $$ {\rho}_{\mathrm{BCP}} $$ . This behavior consistently indicates hydrogen bond strengthening across QTAIM, NBO, and OP/TOP descriptors. Calculations were performed using the ω $$ \omega $$ B97X-D/def2-TZVP level of theory. The findings establish OP/TOP as a powerful tool for computational chemistry, particularly in the study of weak intermolecular interactions and molecular design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
3.30%
发文量
247
审稿时长
1.7 months
期刊介绍: This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信