高维参数空间中基于物理力场的进化机器学习

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
David van der Spoel, Julián Marrades, Kristian Kříž, A. Najla Hosseini, Alfred T. Nordman, João Paulo, Marie-Madeleine Walz, Paul J. van Maaren and Mohammad M. Ghahremanpour
{"title":"高维参数空间中基于物理力场的进化机器学习","authors":"David van der Spoel, Julián Marrades, Kristian Kříž, A. Najla Hosseini, Alfred T. Nordman, João Paulo, Marie-Madeleine Walz, Paul J. van Maaren and Mohammad M. Ghahremanpour","doi":"10.1039/D5DD00178A","DOIUrl":null,"url":null,"abstract":"<p >This work presents the Alexandria Chemistry Toolkit (ACT), an open-source software for machine learning of physics-based force fields (FFs) from scratch, based on user-specified potential functions. In this approach, a set of FF parameters for molecular simulation is described as a chromosome consisting of atom and bond genes. The accuracy of a FF, that is how well quantum chemical training data are reproduced, determines the fitness of the chromosome. The ACT implements a hierarchical parallel scheme that iterates between a genetic algorithm and Monte-Carlo steps for global and local search, to find “genomes” with high fitness. As a sample application, genome evolution is performed to create physical models that allow the prediction of properties of organic molecules in the gas and liquid phases. Evaluation of the prediction accuracy of different models showcases how force field science can contribute to systematically improve prediction accuracy of physicochemical observables.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 7","pages":" 1925-1935"},"PeriodicalIF":6.2000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00178a?page=search","citationCount":"0","resultStr":"{\"title\":\"Evolutionary machine learning of physics-based force fields in high-dimensional parameter-space†\",\"authors\":\"David van der Spoel, Julián Marrades, Kristian Kříž, A. Najla Hosseini, Alfred T. Nordman, João Paulo, Marie-Madeleine Walz, Paul J. van Maaren and Mohammad M. Ghahremanpour\",\"doi\":\"10.1039/D5DD00178A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This work presents the Alexandria Chemistry Toolkit (ACT), an open-source software for machine learning of physics-based force fields (FFs) from scratch, based on user-specified potential functions. In this approach, a set of FF parameters for molecular simulation is described as a chromosome consisting of atom and bond genes. The accuracy of a FF, that is how well quantum chemical training data are reproduced, determines the fitness of the chromosome. The ACT implements a hierarchical parallel scheme that iterates between a genetic algorithm and Monte-Carlo steps for global and local search, to find “genomes” with high fitness. As a sample application, genome evolution is performed to create physical models that allow the prediction of properties of organic molecules in the gas and liquid phases. Evaluation of the prediction accuracy of different models showcases how force field science can contribute to systematically improve prediction accuracy of physicochemical observables.</p>\",\"PeriodicalId\":72816,\"journal\":{\"name\":\"Digital discovery\",\"volume\":\" 7\",\"pages\":\" 1925-1935\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00178a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00178a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00178a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

这项工作提出了亚历山大化学工具包(ACT),这是一个基于用户指定的势函数的基于物理的力场(FFs)的机器学习的开源软件。在这种方法中,一组用于分子模拟的FF参数被描述为由原子和键基因组成的染色体。FF的准确性,即量子化学训练数据的再现程度,决定了染色体的适合度。ACT实现了一种分层并行方案,该方案在遗传算法和蒙特卡罗步骤之间迭代,用于全局和局部搜索,以找到具有高适应度的“基因组”。作为一个示例应用,基因组进化被用于创建物理模型,从而可以预测气相和液相中有机分子的性质。对不同模型预测精度的评价显示了力场科学如何有助于系统地提高物理化学观测物的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Evolutionary machine learning of physics-based force fields in high-dimensional parameter-space†

Evolutionary machine learning of physics-based force fields in high-dimensional parameter-space†

This work presents the Alexandria Chemistry Toolkit (ACT), an open-source software for machine learning of physics-based force fields (FFs) from scratch, based on user-specified potential functions. In this approach, a set of FF parameters for molecular simulation is described as a chromosome consisting of atom and bond genes. The accuracy of a FF, that is how well quantum chemical training data are reproduced, determines the fitness of the chromosome. The ACT implements a hierarchical parallel scheme that iterates between a genetic algorithm and Monte-Carlo steps for global and local search, to find “genomes” with high fitness. As a sample application, genome evolution is performed to create physical models that allow the prediction of properties of organic molecules in the gas and liquid phases. Evaluation of the prediction accuracy of different models showcases how force field science can contribute to systematically improve prediction accuracy of physicochemical observables.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信