约束感知合金设计的物理信息高斯过程分类

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Christofer Hardcastle, Ryan O'Mullan, Raymundo Arróyave and Brent Vela
{"title":"约束感知合金设计的物理信息高斯过程分类","authors":"Christofer Hardcastle, Ryan O'Mullan, Raymundo Arróyave and Brent Vela","doi":"10.1039/D5DD00084J","DOIUrl":null,"url":null,"abstract":"<p >Alloy design can be framed as a constraint-satisfaction problem. Building on previous methodologies, we propose equipping Gaussian Process Classifiers (GPCs) with physics-informed prior mean functions to model the centers of feasible design spaces. Through three case studies, we highlight the utility of informative priors for handling constraints on continuous and categorical properties. (1) <em>Phase stability</em>: by incorporating CALPHAD predictions as priors for solid-solution phase stability, we enhance model validation using a publicly available XRD dataset. (2) <em>Phase stability prediction refinement</em>: we demonstrate an <em>in silico</em> active learning approach to efficiently correct phase diagrams. (3) <em>Continuous property thresholds</em>: by embedding priors into continuous property models, we accelerate the discovery of alloys meeting specific property thresholds <em>via</em> active learning. In each case, integrating physics-based insights into the classification framework substantially improved model performance, demonstrating an efficient strategy for constraint-aware alloy design.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 7","pages":" 1884-1900"},"PeriodicalIF":6.2000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00084j?page=search","citationCount":"0","resultStr":"{\"title\":\"Physics-informed Gaussian process classification for constraint-aware alloy design†\",\"authors\":\"Christofer Hardcastle, Ryan O'Mullan, Raymundo Arróyave and Brent Vela\",\"doi\":\"10.1039/D5DD00084J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Alloy design can be framed as a constraint-satisfaction problem. Building on previous methodologies, we propose equipping Gaussian Process Classifiers (GPCs) with physics-informed prior mean functions to model the centers of feasible design spaces. Through three case studies, we highlight the utility of informative priors for handling constraints on continuous and categorical properties. (1) <em>Phase stability</em>: by incorporating CALPHAD predictions as priors for solid-solution phase stability, we enhance model validation using a publicly available XRD dataset. (2) <em>Phase stability prediction refinement</em>: we demonstrate an <em>in silico</em> active learning approach to efficiently correct phase diagrams. (3) <em>Continuous property thresholds</em>: by embedding priors into continuous property models, we accelerate the discovery of alloys meeting specific property thresholds <em>via</em> active learning. In each case, integrating physics-based insights into the classification framework substantially improved model performance, demonstrating an efficient strategy for constraint-aware alloy design.</p>\",\"PeriodicalId\":72816,\"journal\":{\"name\":\"Digital discovery\",\"volume\":\" 7\",\"pages\":\" 1884-1900\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00084j?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00084j\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00084j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

合金设计可以看作是一个约束满足问题。在之前的方法的基础上,我们提出为高斯过程分类器(GPCs)配备具有物理信息的先验均值函数来建模可行设计空间的中心。通过三个案例研究,我们强调了信息先验在处理连续和分类属性约束方面的效用。(1)相稳定性:通过将CALPHAD预测作为固溶相稳定性的先验,我们使用公开可用的XRD数据集增强了模型验证。(2)相稳定性预测改进:我们展示了一种有效校正相图的计算机主动学习方法。(3)连续属性阈值:通过将先验嵌入到连续属性模型中,通过主动学习加速发现满足特定属性阈值的合金。在每种情况下,将基于物理的见解集成到分类框架中大大提高了模型性能,展示了约束感知合金设计的有效策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Physics-informed Gaussian process classification for constraint-aware alloy design†

Physics-informed Gaussian process classification for constraint-aware alloy design†

Alloy design can be framed as a constraint-satisfaction problem. Building on previous methodologies, we propose equipping Gaussian Process Classifiers (GPCs) with physics-informed prior mean functions to model the centers of feasible design spaces. Through three case studies, we highlight the utility of informative priors for handling constraints on continuous and categorical properties. (1) Phase stability: by incorporating CALPHAD predictions as priors for solid-solution phase stability, we enhance model validation using a publicly available XRD dataset. (2) Phase stability prediction refinement: we demonstrate an in silico active learning approach to efficiently correct phase diagrams. (3) Continuous property thresholds: by embedding priors into continuous property models, we accelerate the discovery of alloys meeting specific property thresholds via active learning. In each case, integrating physics-based insights into the classification framework substantially improved model performance, demonstrating an efficient strategy for constraint-aware alloy design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信