RedCat,一个水性有机电解质的自动发现工作流程†

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Murat Cihan Sorkun, Xuan Zhou, Joannes Murigneux, Nicola Menegazzo, Ayush Kumar Narsaria, David Thanoon, Peter A. A. Klusener, Kaustubh Kaluskar, Sharan Shetty, Efstathios Barmpoutsis and Süleyman Er
{"title":"RedCat,一个水性有机电解质的自动发现工作流程†","authors":"Murat Cihan Sorkun, Xuan Zhou, Joannes Murigneux, Nicola Menegazzo, Ayush Kumar Narsaria, David Thanoon, Peter A. A. Klusener, Kaustubh Kaluskar, Sharan Shetty, Efstathios Barmpoutsis and Süleyman Er","doi":"10.1039/D5DD00111K","DOIUrl":null,"url":null,"abstract":"<p >Developing cost-effective organic molecules with robust redox activity and high solubility is crucial for widespread acceptance and deployment of aqueous organic redox flow batteries (AORFBs). We present RedCat, an automated workflow designed to accelerate the discovery of redox-active organic molecules from extensive molecular databases. This workflow employs structure-based selection, machine learning models for predicting redox reaction energy and aqueous solubility, and dynamically integrates up-to-date pricing data to prioritize candidates. Applying this workflow to 112 million molecules from the PubChem database, we identified 261 promising anolyte candidates. We validated their battery-related properties through first-principles and molecular dynamics calculations and experimentally tested two electrochemically active molecules. These molecules demonstrated higher energy densities than previously reported compounds, confirming the robustness of our workflow in discovering electrolytes. With its open-access code repository and modular design, RedCat is well-suited for integration into self-driving labs, offering a scalable framework for autonomous, data-driven electrolyte discovery.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 7","pages":" 1844-1855"},"PeriodicalIF":6.2000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00111k?page=search","citationCount":"0","resultStr":"{\"title\":\"RedCat, an automated discovery workflow for aqueous organic electrolytes†\",\"authors\":\"Murat Cihan Sorkun, Xuan Zhou, Joannes Murigneux, Nicola Menegazzo, Ayush Kumar Narsaria, David Thanoon, Peter A. A. Klusener, Kaustubh Kaluskar, Sharan Shetty, Efstathios Barmpoutsis and Süleyman Er\",\"doi\":\"10.1039/D5DD00111K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Developing cost-effective organic molecules with robust redox activity and high solubility is crucial for widespread acceptance and deployment of aqueous organic redox flow batteries (AORFBs). We present RedCat, an automated workflow designed to accelerate the discovery of redox-active organic molecules from extensive molecular databases. This workflow employs structure-based selection, machine learning models for predicting redox reaction energy and aqueous solubility, and dynamically integrates up-to-date pricing data to prioritize candidates. Applying this workflow to 112 million molecules from the PubChem database, we identified 261 promising anolyte candidates. We validated their battery-related properties through first-principles and molecular dynamics calculations and experimentally tested two electrochemically active molecules. These molecules demonstrated higher energy densities than previously reported compounds, confirming the robustness of our workflow in discovering electrolytes. With its open-access code repository and modular design, RedCat is well-suited for integration into self-driving labs, offering a scalable framework for autonomous, data-driven electrolyte discovery.</p>\",\"PeriodicalId\":72816,\"journal\":{\"name\":\"Digital discovery\",\"volume\":\" 7\",\"pages\":\" 1844-1855\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00111k?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00111k\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00111k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

开发具有强大氧化还原活性和高溶解度的低成本有机分子对于广泛接受和部署水性有机氧化还原液流电池(aorfb)至关重要。我们介绍了RedCat,一个自动化的工作流程,旨在加速从广泛的分子数据库中发现氧化还原活性有机分子。该工作流程采用基于结构的选择、机器学习模型来预测氧化还原反应能量和水溶解度,并动态集成最新的定价数据来确定候选产品的优先级。将此工作流程应用于PubChem数据库中的1.12亿个分子,我们确定了261个有希望的阳极电解质候选物。我们通过第一性原理和分子动力学计算验证了它们与电池相关的特性,并对两种电化学活性分子进行了实验测试。这些分子比以前报道的化合物表现出更高的能量密度,证实了我们发现电解质工作流程的稳健性。凭借其开放访问的代码库和模块化设计,RedCat非常适合集成到自动驾驶实验室中,为自动驾驶、数据驱动的电解质发现提供了可扩展的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

RedCat, an automated discovery workflow for aqueous organic electrolytes†

RedCat, an automated discovery workflow for aqueous organic electrolytes†

Developing cost-effective organic molecules with robust redox activity and high solubility is crucial for widespread acceptance and deployment of aqueous organic redox flow batteries (AORFBs). We present RedCat, an automated workflow designed to accelerate the discovery of redox-active organic molecules from extensive molecular databases. This workflow employs structure-based selection, machine learning models for predicting redox reaction energy and aqueous solubility, and dynamically integrates up-to-date pricing data to prioritize candidates. Applying this workflow to 112 million molecules from the PubChem database, we identified 261 promising anolyte candidates. We validated their battery-related properties through first-principles and molecular dynamics calculations and experimentally tested two electrochemically active molecules. These molecules demonstrated higher energy densities than previously reported compounds, confirming the robustness of our workflow in discovering electrolytes. With its open-access code repository and modular design, RedCat is well-suited for integration into self-driving labs, offering a scalable framework for autonomous, data-driven electrolyte discovery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信