基于机器学习的电分析脉冲波形设计

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Cameron S. Movassaghi, Katie A. Perrotta, Maya E. Curry, Audrey N. Nashner, Katherine K. Nguyen, Mila E. Wesely, Miguel Alcañiz Fillol, Chong Liu, Aaron S. Meyer and Anne M. Andrews
{"title":"基于机器学习的电分析脉冲波形设计","authors":"Cameron S. Movassaghi, Katie A. Perrotta, Maya E. Curry, Audrey N. Nashner, Katherine K. Nguyen, Mila E. Wesely, Miguel Alcañiz Fillol, Chong Liu, Aaron S. Meyer and Anne M. Andrews","doi":"10.1039/D5DD00005J","DOIUrl":null,"url":null,"abstract":"<p >Voltammetry is widely used to detect and quantify oxidizable or reducible species in complex environments. The neurotransmitter serotonin epitomizes an analyte that is challenging to detect <em>in situ</em> due to its low concentrations and the co-existence of similarly structured analytes and interferents. We developed rapid-pulse voltammetry for brain neurotransmitter monitoring due to the high information content elicited from voltage pulses. Generally, the design of voltammetry waveforms remains challenging due to prohibitively large combinatorial search spaces and a lack of design principles. Here, we illustrate how Bayesian optimization can be used to hone searches for optimized rapid pulse waveforms. Our machine-learning-guided workflow (SeroOpt) outperformed random and human-guided waveform designs and is tunable <em>a priori</em> to enable selective analyte detection. We interpreted the black box optimizer and found that the logic of machine-learning-guided waveform design reflected domain knowledge. Our approach is straightforward and generalizable for all single and multi-analyte problems requiring optimized electrochemical waveform solutions. Overall, SeroOpt enables data-driven exploration of the waveform design space and a new paradigm in electroanalytical method development.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 7","pages":" 1812-1832"},"PeriodicalIF":6.2000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00005j?page=search","citationCount":"0","resultStr":"{\"title\":\"Machine-learning-guided design of electroanalytical pulse waveforms†\",\"authors\":\"Cameron S. Movassaghi, Katie A. Perrotta, Maya E. Curry, Audrey N. Nashner, Katherine K. Nguyen, Mila E. Wesely, Miguel Alcañiz Fillol, Chong Liu, Aaron S. Meyer and Anne M. Andrews\",\"doi\":\"10.1039/D5DD00005J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Voltammetry is widely used to detect and quantify oxidizable or reducible species in complex environments. The neurotransmitter serotonin epitomizes an analyte that is challenging to detect <em>in situ</em> due to its low concentrations and the co-existence of similarly structured analytes and interferents. We developed rapid-pulse voltammetry for brain neurotransmitter monitoring due to the high information content elicited from voltage pulses. Generally, the design of voltammetry waveforms remains challenging due to prohibitively large combinatorial search spaces and a lack of design principles. Here, we illustrate how Bayesian optimization can be used to hone searches for optimized rapid pulse waveforms. Our machine-learning-guided workflow (SeroOpt) outperformed random and human-guided waveform designs and is tunable <em>a priori</em> to enable selective analyte detection. We interpreted the black box optimizer and found that the logic of machine-learning-guided waveform design reflected domain knowledge. Our approach is straightforward and generalizable for all single and multi-analyte problems requiring optimized electrochemical waveform solutions. Overall, SeroOpt enables data-driven exploration of the waveform design space and a new paradigm in electroanalytical method development.</p>\",\"PeriodicalId\":72816,\"journal\":{\"name\":\"Digital discovery\",\"volume\":\" 7\",\"pages\":\" 1812-1832\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00005j?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00005j\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00005j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

伏安法被广泛用于复杂环境中可氧化或可还原物质的检测和定量。神经递质5 -羟色胺是一种具有挑战性的分析物,由于其低浓度和相似结构的分析物和干扰物共存而难以原位检测。由于电压脉冲产生的高信息量,我们开发了快速脉冲伏安法用于脑神经递质监测。通常,伏安波形的设计仍然具有挑战性,因为过于大的组合搜索空间和缺乏设计原则。在这里,我们说明如何使用贝叶斯优化来搜索优化的快速脉冲波形。我们的机器学习引导工作流程(SeroOpt)优于随机和人为引导的波形设计,并且可以先验地进行调整,以实现选择性分析物检测。我们解释了黑箱优化器,发现机器学习引导的波形设计逻辑反映了领域知识。我们的方法是直接和通用的所有单一和多分析问题需要优化的电化学波形解决方案。总体而言,SeroOpt实现了数据驱动的波形设计空间探索,为电分析方法开发提供了新的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine-learning-guided design of electroanalytical pulse waveforms†

Machine-learning-guided design of electroanalytical pulse waveforms†

Voltammetry is widely used to detect and quantify oxidizable or reducible species in complex environments. The neurotransmitter serotonin epitomizes an analyte that is challenging to detect in situ due to its low concentrations and the co-existence of similarly structured analytes and interferents. We developed rapid-pulse voltammetry for brain neurotransmitter monitoring due to the high information content elicited from voltage pulses. Generally, the design of voltammetry waveforms remains challenging due to prohibitively large combinatorial search spaces and a lack of design principles. Here, we illustrate how Bayesian optimization can be used to hone searches for optimized rapid pulse waveforms. Our machine-learning-guided workflow (SeroOpt) outperformed random and human-guided waveform designs and is tunable a priori to enable selective analyte detection. We interpreted the black box optimizer and found that the logic of machine-learning-guided waveform design reflected domain knowledge. Our approach is straightforward and generalizable for all single and multi-analyte problems requiring optimized electrochemical waveform solutions. Overall, SeroOpt enables data-driven exploration of the waveform design space and a new paradigm in electroanalytical method development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信