Jinpeng Li, Chuxuan Ding, Daobin Liu, Linjiang Chen and Jun Jiang
{"title":"中国的自主实验室:加速化学发现的智能驱动平台","authors":"Jinpeng Li, Chuxuan Ding, Daobin Liu, Linjiang Chen and Jun Jiang","doi":"10.1039/D5DD00072F","DOIUrl":null,"url":null,"abstract":"<p >The emergence of autonomous laboratories—automated robotic platforms integrated with rapidly advancing artificial intelligence (AI)—is poised to transform research by shifting traditional trial-and-error approaches toward accelerated chemical discovery. These platforms combine AI models, hardware, and software to execute experiments, interact with robotic systems, and manage data, thereby closing the predict-make-measure discovery loop. However, key challenges remain, including how to efficiently achieve autonomous high-throughput experimentation and integrate diverse technologies into cohesive systems. In this perspective, we identify the fundamental elements required for closed-loop autonomous experimentation: chemical science databases, large-scale intelligent models, automated experimental platforms, and integrated management/decision-making systems. Furthermore, with the advancement of AI models, we emphasize the progress from simple iterative-algorithm-driven systems to comprehensive intelligent autonomous systems powered by large-scale models in China, which enable self-driving chemical discovery within individual laboratories. Looking ahead, the development of intelligent autonomous laboratories into a distributed network holds great promise for further accelerating chemical discoveries and fostering innovation on a broader scale.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 7","pages":" 1672-1684"},"PeriodicalIF":6.2000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00072f?page=search","citationCount":"0","resultStr":"{\"title\":\"Autonomous laboratories in China: an embodied intelligence-driven platform to accelerate chemical discovery\",\"authors\":\"Jinpeng Li, Chuxuan Ding, Daobin Liu, Linjiang Chen and Jun Jiang\",\"doi\":\"10.1039/D5DD00072F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The emergence of autonomous laboratories—automated robotic platforms integrated with rapidly advancing artificial intelligence (AI)—is poised to transform research by shifting traditional trial-and-error approaches toward accelerated chemical discovery. These platforms combine AI models, hardware, and software to execute experiments, interact with robotic systems, and manage data, thereby closing the predict-make-measure discovery loop. However, key challenges remain, including how to efficiently achieve autonomous high-throughput experimentation and integrate diverse technologies into cohesive systems. In this perspective, we identify the fundamental elements required for closed-loop autonomous experimentation: chemical science databases, large-scale intelligent models, automated experimental platforms, and integrated management/decision-making systems. Furthermore, with the advancement of AI models, we emphasize the progress from simple iterative-algorithm-driven systems to comprehensive intelligent autonomous systems powered by large-scale models in China, which enable self-driving chemical discovery within individual laboratories. Looking ahead, the development of intelligent autonomous laboratories into a distributed network holds great promise for further accelerating chemical discoveries and fostering innovation on a broader scale.</p>\",\"PeriodicalId\":72816,\"journal\":{\"name\":\"Digital discovery\",\"volume\":\" 7\",\"pages\":\" 1672-1684\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00072f?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00072f\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00072f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Autonomous laboratories in China: an embodied intelligence-driven platform to accelerate chemical discovery
The emergence of autonomous laboratories—automated robotic platforms integrated with rapidly advancing artificial intelligence (AI)—is poised to transform research by shifting traditional trial-and-error approaches toward accelerated chemical discovery. These platforms combine AI models, hardware, and software to execute experiments, interact with robotic systems, and manage data, thereby closing the predict-make-measure discovery loop. However, key challenges remain, including how to efficiently achieve autonomous high-throughput experimentation and integrate diverse technologies into cohesive systems. In this perspective, we identify the fundamental elements required for closed-loop autonomous experimentation: chemical science databases, large-scale intelligent models, automated experimental platforms, and integrated management/decision-making systems. Furthermore, with the advancement of AI models, we emphasize the progress from simple iterative-algorithm-driven systems to comprehensive intelligent autonomous systems powered by large-scale models in China, which enable self-driving chemical discovery within individual laboratories. Looking ahead, the development of intelligent autonomous laboratories into a distributed network holds great promise for further accelerating chemical discoveries and fostering innovation on a broader scale.