Debasish Roy , Tridiv Ghosh , Bappa Das , Raghuveer Jatav , Debashis Chakraborty
{"title":"基于智能手机的图像分析和可解释的机器学习,用于估算不同印度土壤的土壤湿度","authors":"Debasish Roy , Tridiv Ghosh , Bappa Das , Raghuveer Jatav , Debashis Chakraborty","doi":"10.1016/j.rsase.2025.101655","DOIUrl":null,"url":null,"abstract":"<div><div>Reliable soil moisture estimation is crucial for agricultural water management, yet conventional methods are often invasive, costly, and impractical for frequent field-level use. This study presence a smartphone-based, non-destructive approach for estimating soil moisture content (SMC) estimation across five contrasting Indian soil groups from 14 locations. A total of 238 soil images were analyzed to extract 33 colour-based features, which were then used to train and validate ten machine learning (ML) models. The Random Forest (RF) model exhibited the highest predictive accuracy (R<sup>2</sup> = 0.78; RMSE = 5.98 %) during validation. To improve interpretability, SHAP and ALE techniques identified Redness Index (RI), Colour Feature Index (ColFeatInd), red band (R), value (V), and X colour space as key predictors. Boruta selection confirmed the relevance of all features. This study demonstrates the potential of combining smartphone imagery and interpretable ML to scalable, low-cost SMC across diverse soil types.</div></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"39 ","pages":"Article 101655"},"PeriodicalIF":4.5000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smartphone-based image analysis and interpretable machine learning for soil moisture estimation across diverse Indian soils\",\"authors\":\"Debasish Roy , Tridiv Ghosh , Bappa Das , Raghuveer Jatav , Debashis Chakraborty\",\"doi\":\"10.1016/j.rsase.2025.101655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Reliable soil moisture estimation is crucial for agricultural water management, yet conventional methods are often invasive, costly, and impractical for frequent field-level use. This study presence a smartphone-based, non-destructive approach for estimating soil moisture content (SMC) estimation across five contrasting Indian soil groups from 14 locations. A total of 238 soil images were analyzed to extract 33 colour-based features, which were then used to train and validate ten machine learning (ML) models. The Random Forest (RF) model exhibited the highest predictive accuracy (R<sup>2</sup> = 0.78; RMSE = 5.98 %) during validation. To improve interpretability, SHAP and ALE techniques identified Redness Index (RI), Colour Feature Index (ColFeatInd), red band (R), value (V), and X colour space as key predictors. Boruta selection confirmed the relevance of all features. This study demonstrates the potential of combining smartphone imagery and interpretable ML to scalable, low-cost SMC across diverse soil types.</div></div>\",\"PeriodicalId\":53227,\"journal\":{\"name\":\"Remote Sensing Applications-Society and Environment\",\"volume\":\"39 \",\"pages\":\"Article 101655\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing Applications-Society and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352938525002083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938525002083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Smartphone-based image analysis and interpretable machine learning for soil moisture estimation across diverse Indian soils
Reliable soil moisture estimation is crucial for agricultural water management, yet conventional methods are often invasive, costly, and impractical for frequent field-level use. This study presence a smartphone-based, non-destructive approach for estimating soil moisture content (SMC) estimation across five contrasting Indian soil groups from 14 locations. A total of 238 soil images were analyzed to extract 33 colour-based features, which were then used to train and validate ten machine learning (ML) models. The Random Forest (RF) model exhibited the highest predictive accuracy (R2 = 0.78; RMSE = 5.98 %) during validation. To improve interpretability, SHAP and ALE techniques identified Redness Index (RI), Colour Feature Index (ColFeatInd), red band (R), value (V), and X colour space as key predictors. Boruta selection confirmed the relevance of all features. This study demonstrates the potential of combining smartphone imagery and interpretable ML to scalable, low-cost SMC across diverse soil types.
期刊介绍:
The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems