FB-YOLOv8s:一种基于YOLOv8s的火灾探测算法

Yuhang Liu, Chunjuan Bo, Chong Feng
{"title":"FB-YOLOv8s:一种基于YOLOv8s的火灾探测算法","authors":"Yuhang Liu,&nbsp;Chunjuan Bo,&nbsp;Chong Feng","doi":"10.1016/j.cogr.2025.06.002","DOIUrl":null,"url":null,"abstract":"<div><div>The significance of fire detection lies in protecting public safety and safeguarding the lives and property of people. However, there exist some problems in traditional detection algorithms of fire, such as low accuracy, high miss rate, and low detection rate of small targets. To effectively solve these issues, a fire detection algorithm based on YOLOv8s is introduced in this paper, called FB-YOLOv8s. First, the FasterNet lightweight network is introduced into the YOLOv8s network, merging the FasterNet Block structure of FasterNet with the original C2f modules to reduce the number of model parameters. Second, the Bi-directional Feature Pyramid Network (BiFPN) is incorporated to replace the Path Aggregation Network (PANet) in the neck network to enhance the model’s feature fusion capability. Finally, we adopt the WIoUv3 loss function to optimize the training process and improve detection accuracy. The experimental results demonstrate that compared to the original algorithm, the mAP<span><math><msub><mrow></mrow><mrow><mn>0.5</mn></mrow></msub></math></span> of FB-YOLOv8s increases by 2.0 %, and the number of parameters decreases by 25.23 %. This method has better detection performance for fire targets.</div></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"5 ","pages":"Pages 240-248"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FB-YOLOv8s: A fire detection algorithm based on YOLOv8s\",\"authors\":\"Yuhang Liu,&nbsp;Chunjuan Bo,&nbsp;Chong Feng\",\"doi\":\"10.1016/j.cogr.2025.06.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The significance of fire detection lies in protecting public safety and safeguarding the lives and property of people. However, there exist some problems in traditional detection algorithms of fire, such as low accuracy, high miss rate, and low detection rate of small targets. To effectively solve these issues, a fire detection algorithm based on YOLOv8s is introduced in this paper, called FB-YOLOv8s. First, the FasterNet lightweight network is introduced into the YOLOv8s network, merging the FasterNet Block structure of FasterNet with the original C2f modules to reduce the number of model parameters. Second, the Bi-directional Feature Pyramid Network (BiFPN) is incorporated to replace the Path Aggregation Network (PANet) in the neck network to enhance the model’s feature fusion capability. Finally, we adopt the WIoUv3 loss function to optimize the training process and improve detection accuracy. The experimental results demonstrate that compared to the original algorithm, the mAP<span><math><msub><mrow></mrow><mrow><mn>0.5</mn></mrow></msub></math></span> of FB-YOLOv8s increases by 2.0 %, and the number of parameters decreases by 25.23 %. This method has better detection performance for fire targets.</div></div>\",\"PeriodicalId\":100288,\"journal\":{\"name\":\"Cognitive Robotics\",\"volume\":\"5 \",\"pages\":\"Pages 240-248\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667241325000163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Robotics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667241325000163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

火灾探测的意义在于保护公共安全,保障人民生命财产安全。然而,传统的火力检测算法存在精度低、脱靶率高、对小目标的检测率低等问题。为了有效解决这些问题,本文介绍了一种基于YOLOv8s的火灾探测算法FB-YOLOv8s。首先,在YOLOv8s网络中引入FasterNet轻量级网络,将FasterNet的FasterNet Block结构与原有的C2f模块合并,减少模型参数的数量。其次,引入双向特征金字塔网络(BiFPN)取代颈部网络中的路径聚合网络(PANet),增强模型的特征融合能力;最后,采用WIoUv3损失函数优化训练过程,提高检测精度。实验结果表明,与原算法相比,FB-YOLOv8s的mAP0.5提高了2.0%,参数个数减少了25.23%。该方法对火力目标具有较好的探测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FB-YOLOv8s: A fire detection algorithm based on YOLOv8s
The significance of fire detection lies in protecting public safety and safeguarding the lives and property of people. However, there exist some problems in traditional detection algorithms of fire, such as low accuracy, high miss rate, and low detection rate of small targets. To effectively solve these issues, a fire detection algorithm based on YOLOv8s is introduced in this paper, called FB-YOLOv8s. First, the FasterNet lightweight network is introduced into the YOLOv8s network, merging the FasterNet Block structure of FasterNet with the original C2f modules to reduce the number of model parameters. Second, the Bi-directional Feature Pyramid Network (BiFPN) is incorporated to replace the Path Aggregation Network (PANet) in the neck network to enhance the model’s feature fusion capability. Finally, we adopt the WIoUv3 loss function to optimize the training process and improve detection accuracy. The experimental results demonstrate that compared to the original algorithm, the mAP0.5 of FB-YOLOv8s increases by 2.0 %, and the number of parameters decreases by 25.23 %. This method has better detection performance for fire targets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信