质子癌治疗高能束流输运线超导磁体的设计

IF 1.3 3区 物理与天体物理 Q4 PHYSICS, APPLIED
Gang He , Yi Zhu , Wenjie Yang , Yu Liang , Yiqin Lei , Yanbing Yang , Pengshan Chang , Lizhen Ma , Guangquan Chen , Kedong Wang , Xu Zhang , Kai Wang , Tianfa Liao
{"title":"质子癌治疗高能束流输运线超导磁体的设计","authors":"Gang He ,&nbsp;Yi Zhu ,&nbsp;Wenjie Yang ,&nbsp;Yu Liang ,&nbsp;Yiqin Lei ,&nbsp;Yanbing Yang ,&nbsp;Pengshan Chang ,&nbsp;Lizhen Ma ,&nbsp;Guangquan Chen ,&nbsp;Kedong Wang ,&nbsp;Xu Zhang ,&nbsp;Kai Wang ,&nbsp;Tianfa Liao","doi":"10.1016/j.physc.2025.1354718","DOIUrl":null,"url":null,"abstract":"<div><div>In proton cancer therapy, to overcome the size and performance limitations of conventional electromagnetic systems, we have designed a superconducting high-energy beam transport line that utilizes superconducting magnets to provide higher magnetic fields, thereby significantly reducing system size and enhancing efficiency. The transport line consists of six groups of superconducting magnets, each employing a discrete cosine theta (DCT) coil structure <span><span>[1]</span></span>, <span><span>[2]</span></span>, <span><span>[3]</span></span>, <span><span>[4]</span></span>, <span><span>[5]</span></span>, comprising one curved dipole magnet and two quadrupole magnets, forming a Q-D-Q (quadrupole-dipole-quadrupole) configuration. The dipole magnet generates a central field of 2.77 T with a bending radius of 900 mm, while the quadrupole magnets have a gradient of 40 T/m. To ensure magnetic field quality, we developed a parametric model in CST and optimized the field characteristics, achieving an integral magnetic field uniformity of better than 0.01%. During rapid excitation, eddy current losses in metallic structures and AC losses in superconductors lead to temperature rise, which may trigger quenching. To mitigate this, we developed a detailed finite element model (FEM) in ANSYS and optimized the magnet’s cooling structure, ensuring that the maximum temperature rise is limited to 0.66 K over three operating cycles. Simultaneously, we established a 2D structural model to analyze the stresses in the magnet, confirming that the Von Mises stress is lower than the yield stress. Through these optimizations, a prototype was successfully fabricated to explore the manufacturing process of the Q-D-Q magnets. This work not only provides a technical foundation for future mass production but also offers critical technical reserves for the construction of superconducting Gantries.</div></div>","PeriodicalId":20159,"journal":{"name":"Physica C-superconductivity and Its Applications","volume":"635 ","pages":"Article 1354718"},"PeriodicalIF":1.3000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of superconducting magnets for high energy beam transport lines for proton cancer therapy\",\"authors\":\"Gang He ,&nbsp;Yi Zhu ,&nbsp;Wenjie Yang ,&nbsp;Yu Liang ,&nbsp;Yiqin Lei ,&nbsp;Yanbing Yang ,&nbsp;Pengshan Chang ,&nbsp;Lizhen Ma ,&nbsp;Guangquan Chen ,&nbsp;Kedong Wang ,&nbsp;Xu Zhang ,&nbsp;Kai Wang ,&nbsp;Tianfa Liao\",\"doi\":\"10.1016/j.physc.2025.1354718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In proton cancer therapy, to overcome the size and performance limitations of conventional electromagnetic systems, we have designed a superconducting high-energy beam transport line that utilizes superconducting magnets to provide higher magnetic fields, thereby significantly reducing system size and enhancing efficiency. The transport line consists of six groups of superconducting magnets, each employing a discrete cosine theta (DCT) coil structure <span><span>[1]</span></span>, <span><span>[2]</span></span>, <span><span>[3]</span></span>, <span><span>[4]</span></span>, <span><span>[5]</span></span>, comprising one curved dipole magnet and two quadrupole magnets, forming a Q-D-Q (quadrupole-dipole-quadrupole) configuration. The dipole magnet generates a central field of 2.77 T with a bending radius of 900 mm, while the quadrupole magnets have a gradient of 40 T/m. To ensure magnetic field quality, we developed a parametric model in CST and optimized the field characteristics, achieving an integral magnetic field uniformity of better than 0.01%. During rapid excitation, eddy current losses in metallic structures and AC losses in superconductors lead to temperature rise, which may trigger quenching. To mitigate this, we developed a detailed finite element model (FEM) in ANSYS and optimized the magnet’s cooling structure, ensuring that the maximum temperature rise is limited to 0.66 K over three operating cycles. Simultaneously, we established a 2D structural model to analyze the stresses in the magnet, confirming that the Von Mises stress is lower than the yield stress. Through these optimizations, a prototype was successfully fabricated to explore the manufacturing process of the Q-D-Q magnets. This work not only provides a technical foundation for future mass production but also offers critical technical reserves for the construction of superconducting Gantries.</div></div>\",\"PeriodicalId\":20159,\"journal\":{\"name\":\"Physica C-superconductivity and Its Applications\",\"volume\":\"635 \",\"pages\":\"Article 1354718\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica C-superconductivity and Its Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921453425000711\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica C-superconductivity and Its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921453425000711","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在质子癌治疗中,为了克服传统电磁系统的尺寸和性能限制,我们设计了一种超导高能束流传输线,利用超导磁体提供更高的磁场,从而大大减小了系统的尺寸,提高了效率。传输线由六组超导磁体组成,每组磁体采用离散余弦(DCT)线圈结构[1],[2],[3],[4],[5],由一个弯曲偶极磁铁和两个四极磁铁组成,形成Q-D-Q(四极-偶极-四极)结构。偶极磁铁的中心磁场为2.77 T,弯曲半径为900 mm,而四极磁铁的梯度为40 T/m。为了保证磁场质量,我们在CST中建立了参数化模型,并对磁场特性进行了优化,使整体磁场均匀性优于0.01%。在快速激励过程中,金属结构中的涡流损耗和超导体中的交流损耗会导致温度升高,从而可能引发淬火。为了缓解这一问题,我们在ANSYS中开发了详细的有限元模型(FEM),并优化了磁铁的冷却结构,确保在三个工作周期内最大温升限制在0.66 K。同时,我们建立了二维结构模型来分析磁体内部的应力,证实了Von Mises应力小于屈服应力。通过这些优化,成功地制作了一个原型,探索了Q-D-Q磁体的制造工艺。这项工作不仅为未来的大规模生产提供了技术基础,而且为超导龙门的建设提供了关键的技术储备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of superconducting magnets for high energy beam transport lines for proton cancer therapy
In proton cancer therapy, to overcome the size and performance limitations of conventional electromagnetic systems, we have designed a superconducting high-energy beam transport line that utilizes superconducting magnets to provide higher magnetic fields, thereby significantly reducing system size and enhancing efficiency. The transport line consists of six groups of superconducting magnets, each employing a discrete cosine theta (DCT) coil structure [1], [2], [3], [4], [5], comprising one curved dipole magnet and two quadrupole magnets, forming a Q-D-Q (quadrupole-dipole-quadrupole) configuration. The dipole magnet generates a central field of 2.77 T with a bending radius of 900 mm, while the quadrupole magnets have a gradient of 40 T/m. To ensure magnetic field quality, we developed a parametric model in CST and optimized the field characteristics, achieving an integral magnetic field uniformity of better than 0.01%. During rapid excitation, eddy current losses in metallic structures and AC losses in superconductors lead to temperature rise, which may trigger quenching. To mitigate this, we developed a detailed finite element model (FEM) in ANSYS and optimized the magnet’s cooling structure, ensuring that the maximum temperature rise is limited to 0.66 K over three operating cycles. Simultaneously, we established a 2D structural model to analyze the stresses in the magnet, confirming that the Von Mises stress is lower than the yield stress. Through these optimizations, a prototype was successfully fabricated to explore the manufacturing process of the Q-D-Q magnets. This work not only provides a technical foundation for future mass production but also offers critical technical reserves for the construction of superconducting Gantries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
11.80%
发文量
102
审稿时长
66 days
期刊介绍: Physica C (Superconductivity and its Applications) publishes peer-reviewed papers on novel developments in the field of superconductivity. Topics include discovery of new superconducting materials and elucidation of their mechanisms, physics of vortex matter, enhancement of critical properties of superconductors, identification of novel properties and processing methods that improve their performance and promote new routes to applications of superconductivity. The main goal of the journal is to publish: 1. Papers that substantially increase the understanding of the fundamental aspects and mechanisms of superconductivity and vortex matter through theoretical and experimental methods. 2. Papers that report on novel physical properties and processing of materials that substantially enhance their critical performance. 3. Papers that promote new or improved routes to applications of superconductivity and/or superconducting materials, and proof-of-concept novel proto-type superconducting devices. The editors of the journal will select papers that are well written and based on thorough research that provide truly novel insights.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信