Peihu Duan , Tao Liu , Yu Xing , Karl Henrik Johansson
{"title":"基于最大似然优化的未知线性系统鲁棒数据驱动卡尔曼滤波","authors":"Peihu Duan , Tao Liu , Yu Xing , Karl Henrik Johansson","doi":"10.1016/j.automatica.2025.112474","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the state estimation problem for unknown linear systems subject to both process and measurement noise. Based on a prior input–output trajectory sampled at a higher frequency and a prior state trajectory sampled at a lower frequency, we propose a novel robust data-driven Kalman filter (RDKF) that integrates model identification with state estimation for the unknown system. Specifically, the state estimation problem is formulated as a non-convex maximum likelihood optimization problem. Then, we slightly modify the optimization problem to get a problem solvable with a recursive algorithm. Based on the optimal solution to this new problem, the RDKF is designed, which can estimate the state of a given but unknown state-space model. The performance gap between the RDKF and the optimal Kalman filter based on known system matrices is quantified through a sample complexity bound. In particular, when the number of the pre-collected states tends to infinity, this gap converges to zero. Finally, the effectiveness of the theoretical results is illustrated by numerical simulations.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"180 ","pages":"Article 112474"},"PeriodicalIF":4.8000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust data-driven Kalman filtering for unknown linear systems using maximum likelihood optimization\",\"authors\":\"Peihu Duan , Tao Liu , Yu Xing , Karl Henrik Johansson\",\"doi\":\"10.1016/j.automatica.2025.112474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates the state estimation problem for unknown linear systems subject to both process and measurement noise. Based on a prior input–output trajectory sampled at a higher frequency and a prior state trajectory sampled at a lower frequency, we propose a novel robust data-driven Kalman filter (RDKF) that integrates model identification with state estimation for the unknown system. Specifically, the state estimation problem is formulated as a non-convex maximum likelihood optimization problem. Then, we slightly modify the optimization problem to get a problem solvable with a recursive algorithm. Based on the optimal solution to this new problem, the RDKF is designed, which can estimate the state of a given but unknown state-space model. The performance gap between the RDKF and the optimal Kalman filter based on known system matrices is quantified through a sample complexity bound. In particular, when the number of the pre-collected states tends to infinity, this gap converges to zero. Finally, the effectiveness of the theoretical results is illustrated by numerical simulations.</div></div>\",\"PeriodicalId\":55413,\"journal\":{\"name\":\"Automatica\",\"volume\":\"180 \",\"pages\":\"Article 112474\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automatica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0005109825003693\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005109825003693","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Robust data-driven Kalman filtering for unknown linear systems using maximum likelihood optimization
This paper investigates the state estimation problem for unknown linear systems subject to both process and measurement noise. Based on a prior input–output trajectory sampled at a higher frequency and a prior state trajectory sampled at a lower frequency, we propose a novel robust data-driven Kalman filter (RDKF) that integrates model identification with state estimation for the unknown system. Specifically, the state estimation problem is formulated as a non-convex maximum likelihood optimization problem. Then, we slightly modify the optimization problem to get a problem solvable with a recursive algorithm. Based on the optimal solution to this new problem, the RDKF is designed, which can estimate the state of a given but unknown state-space model. The performance gap between the RDKF and the optimal Kalman filter based on known system matrices is quantified through a sample complexity bound. In particular, when the number of the pre-collected states tends to infinity, this gap converges to zero. Finally, the effectiveness of the theoretical results is illustrated by numerical simulations.
期刊介绍:
Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field.
After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience.
Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.