分段光滑开曲线上的Helmholtz Dirichlet和Neumann问题

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Johan Helsing , Shidong Jiang
{"title":"分段光滑开曲线上的Helmholtz Dirichlet和Neumann问题","authors":"Johan Helsing ,&nbsp;Shidong Jiang","doi":"10.1016/j.jcp.2025.114223","DOIUrl":null,"url":null,"abstract":"<div><div>A numerical scheme is presented for solving the Helmholtz equation with Dirichlet or Neumann boundary conditions on piecewise smooth open curves, where the curves may have corners and multiple junctions. Existing integral equation methods for smooth open curves rely on analyzing the exact singularities of the density at endpoints for associated integral operators, explicitly extracting these singularities from the densities in the formulation, and using global quadrature to discretize the boundary integral equation. Extending these methods to handle curves with corners and multiple junctions is challenging because the singularity analysis becomes much more complex, and constructing high-order quadrature for discretizing layer potentials with singular and hypersingular kernels and singular densities is nontrivial. The proposed scheme is built upon the following two observations. First, the single-layer potential operator and the normal derivative of the double-layer potential operator serve as effective preconditioners for each other locally. Second, the recursively compressed inverse preconditioning (RCIP) method can be extended to address “implicit” second-kind integral equations. The scheme is high-order, adaptive, and capable of handling corners and multiple junctions without prior knowledge of the density singularity. It is also compatible with fast algorithms, such as the fast multipole method. The performance of the scheme is illustrated with several numerical examples.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"539 ","pages":"Article 114223"},"PeriodicalIF":3.8000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Helmholtz Dirichlet and Neumann problems on piecewise smooth open curves\",\"authors\":\"Johan Helsing ,&nbsp;Shidong Jiang\",\"doi\":\"10.1016/j.jcp.2025.114223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A numerical scheme is presented for solving the Helmholtz equation with Dirichlet or Neumann boundary conditions on piecewise smooth open curves, where the curves may have corners and multiple junctions. Existing integral equation methods for smooth open curves rely on analyzing the exact singularities of the density at endpoints for associated integral operators, explicitly extracting these singularities from the densities in the formulation, and using global quadrature to discretize the boundary integral equation. Extending these methods to handle curves with corners and multiple junctions is challenging because the singularity analysis becomes much more complex, and constructing high-order quadrature for discretizing layer potentials with singular and hypersingular kernels and singular densities is nontrivial. The proposed scheme is built upon the following two observations. First, the single-layer potential operator and the normal derivative of the double-layer potential operator serve as effective preconditioners for each other locally. Second, the recursively compressed inverse preconditioning (RCIP) method can be extended to address “implicit” second-kind integral equations. The scheme is high-order, adaptive, and capable of handling corners and multiple junctions without prior knowledge of the density singularity. It is also compatible with fast algorithms, such as the fast multipole method. The performance of the scheme is illustrated with several numerical examples.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"539 \",\"pages\":\"Article 114223\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999125005066\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125005066","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

给出了分段光滑开曲线上具有Dirichlet或Neumann边界条件的亥姆霍兹方程的一种数值解法,其中曲线可能有角和多个结点。现有的光滑开曲线积分方程方法依赖于分析相关积分算子端点密度的精确奇异性,从公式中的密度中显式提取这些奇异性,并使用全局正交将边界积分方程离散化。将这些方法扩展到处理有角和多结点的曲线是具有挑战性的,因为奇异分析变得更加复杂,并且构造具有奇异核和超奇异密度的离散层势的高阶正交是非平凡的。提出的方案是建立在以下两点观察的基础上的。首先,单层势算子和双层势算子的法向导数在局部互为有效的前置条件。其次,将递归压缩逆预处理(RCIP)方法推广到求解“隐式”第二类积分方程。该方案具有高阶自适应能力,能够在不知道密度奇点的情况下处理拐角和多个路口。它也兼容快速算法,如快速多极方法。通过几个数值算例说明了该方案的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Helmholtz Dirichlet and Neumann problems on piecewise smooth open curves
A numerical scheme is presented for solving the Helmholtz equation with Dirichlet or Neumann boundary conditions on piecewise smooth open curves, where the curves may have corners and multiple junctions. Existing integral equation methods for smooth open curves rely on analyzing the exact singularities of the density at endpoints for associated integral operators, explicitly extracting these singularities from the densities in the formulation, and using global quadrature to discretize the boundary integral equation. Extending these methods to handle curves with corners and multiple junctions is challenging because the singularity analysis becomes much more complex, and constructing high-order quadrature for discretizing layer potentials with singular and hypersingular kernels and singular densities is nontrivial. The proposed scheme is built upon the following two observations. First, the single-layer potential operator and the normal derivative of the double-layer potential operator serve as effective preconditioners for each other locally. Second, the recursively compressed inverse preconditioning (RCIP) method can be extended to address “implicit” second-kind integral equations. The scheme is high-order, adaptive, and capable of handling corners and multiple junctions without prior knowledge of the density singularity. It is also compatible with fast algorithms, such as the fast multipole method. The performance of the scheme is illustrated with several numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信