Beatrice Sonzogni , Jose Maria Manzano , Fabio Previdi , Antonio Ferramosca
{"title":"胰岛素-葡萄糖系统的混合建模:结合人工胰腺的线性和数据驱动模型","authors":"Beatrice Sonzogni , Jose Maria Manzano , Fabio Previdi , Antonio Ferramosca","doi":"10.1016/j.ifacol.2025.06.019","DOIUrl":null,"url":null,"abstract":"<div><div>Type 1 diabetes mellitus is a chronic condition that requires insulin delivery to maintain blood glucose levels within a desired range. The artificial pancreas (AP), which integrates a continuous glucose sensor, an insulin pump, and a control algorithm, is a promising solution for automating insulin delivery. Designing optimal controllers for the AP is crucial to its effectiveness. Existing approaches often rely on advanced controllers based on models of the insulin-glucose system. However, this system is highly complex, nonlinear, and subject to time-varying dynamics and inter-patient variability, which pose significant challenges for model accuracy and control design. Hence, data-driven and machine learning-based models are emerging as powerful alternatives. This paper presents a novel data-driven modeling approach that combines two components: a linear model and a machine learning-based model. This latter is computed with the CHoKI learning method, to capture the nonlinear deviations of the actual system from the linear model, enabling the combined model to better represent the insulin-glucose system. This hybrid modeling approach offers improved prediction accuracy compared to previously proposed models in the literature. The improved model accuracy can lead to better controllers for the AP. The proposed approach is validated using the virtual patients of the FDA-accepted UVA/Padova simulator. The results outperform state-of-the-art models in prediction errors, demonstrating its potential as a step forward in AP control system design.</div></div>","PeriodicalId":37894,"journal":{"name":"IFAC-PapersOnLine","volume":"59 2","pages":"Pages 109-114"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Modeling of the Insulin-Glucose System: Combining Linear and Data-Driven Models for Artificial Pancreas\",\"authors\":\"Beatrice Sonzogni , Jose Maria Manzano , Fabio Previdi , Antonio Ferramosca\",\"doi\":\"10.1016/j.ifacol.2025.06.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Type 1 diabetes mellitus is a chronic condition that requires insulin delivery to maintain blood glucose levels within a desired range. The artificial pancreas (AP), which integrates a continuous glucose sensor, an insulin pump, and a control algorithm, is a promising solution for automating insulin delivery. Designing optimal controllers for the AP is crucial to its effectiveness. Existing approaches often rely on advanced controllers based on models of the insulin-glucose system. However, this system is highly complex, nonlinear, and subject to time-varying dynamics and inter-patient variability, which pose significant challenges for model accuracy and control design. Hence, data-driven and machine learning-based models are emerging as powerful alternatives. This paper presents a novel data-driven modeling approach that combines two components: a linear model and a machine learning-based model. This latter is computed with the CHoKI learning method, to capture the nonlinear deviations of the actual system from the linear model, enabling the combined model to better represent the insulin-glucose system. This hybrid modeling approach offers improved prediction accuracy compared to previously proposed models in the literature. The improved model accuracy can lead to better controllers for the AP. The proposed approach is validated using the virtual patients of the FDA-accepted UVA/Padova simulator. The results outperform state-of-the-art models in prediction errors, demonstrating its potential as a step forward in AP control system design.</div></div>\",\"PeriodicalId\":37894,\"journal\":{\"name\":\"IFAC-PapersOnLine\",\"volume\":\"59 2\",\"pages\":\"Pages 109-114\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC-PapersOnLine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405896325003234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC-PapersOnLine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405896325003234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Hybrid Modeling of the Insulin-Glucose System: Combining Linear and Data-Driven Models for Artificial Pancreas
Type 1 diabetes mellitus is a chronic condition that requires insulin delivery to maintain blood glucose levels within a desired range. The artificial pancreas (AP), which integrates a continuous glucose sensor, an insulin pump, and a control algorithm, is a promising solution for automating insulin delivery. Designing optimal controllers for the AP is crucial to its effectiveness. Existing approaches often rely on advanced controllers based on models of the insulin-glucose system. However, this system is highly complex, nonlinear, and subject to time-varying dynamics and inter-patient variability, which pose significant challenges for model accuracy and control design. Hence, data-driven and machine learning-based models are emerging as powerful alternatives. This paper presents a novel data-driven modeling approach that combines two components: a linear model and a machine learning-based model. This latter is computed with the CHoKI learning method, to capture the nonlinear deviations of the actual system from the linear model, enabling the combined model to better represent the insulin-glucose system. This hybrid modeling approach offers improved prediction accuracy compared to previously proposed models in the literature. The improved model accuracy can lead to better controllers for the AP. The proposed approach is validated using the virtual patients of the FDA-accepted UVA/Padova simulator. The results outperform state-of-the-art models in prediction errors, demonstrating its potential as a step forward in AP control system design.
期刊介绍:
All papers from IFAC meetings are published, in partnership with Elsevier, the IFAC Publisher, in theIFAC-PapersOnLine proceedings series hosted at the ScienceDirect web service. This series includes papers previously published in the IFAC website.The main features of the IFAC-PapersOnLine series are: -Online archive including papers from IFAC Symposia, Congresses, Conferences, and most Workshops. -All papers accepted at the meeting are published in PDF format - searchable and citable. -All papers published on the web site can be cited using the IFAC PapersOnLine ISSN and the individual paper DOI (Digital Object Identifier). The site is Open Access in nature - no charge is made to individuals for reading or downloading. Copyright of all papers belongs to IFAC and must be referenced if derivative journal papers are produced from the conference papers. All papers published in IFAC-PapersOnLine have undergone a peer review selection process according to the IFAC rules.