过渡金属辅助铁电异质结驱动的光催化和电催化转化

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Nan Mu , Ruowen Zhang , Yanyu Liu , Wei Zhou
{"title":"过渡金属辅助铁电异质结驱动的光催化和电催化转化","authors":"Nan Mu ,&nbsp;Ruowen Zhang ,&nbsp;Yanyu Liu ,&nbsp;Wei Zhou","doi":"10.1016/j.jcis.2025.138359","DOIUrl":null,"url":null,"abstract":"<div><div>Ferroelectric polarization switching can dynamically modulate the catalytic activity via electronic phase transitions. Herein, we systematically investigated the hydrogen evolution reaction, oxygen evolution and reduction reaction activities of heterostructures formed by stacking transition metal-doped graphene‑zinc oxide (TM@g-ZnO) and ferroelectric In<sub>2</sub>Se<sub>3</sub> monolayers using density functional theory calculations. Pt@g-ZnO/In<sub>2</sub>Se<sub>3</sub> exhibits superior hydrogen evolution reaction (HER) performance, while Ni@g-ZnO/<span><math><mrow><mo>↓</mo></mrow></math></span>-In<sub>2</sub>Se<sub>3</sub> and Pd@g-ZnO/<span><math><mrow><mo>↑</mo></mrow></math></span>-In<sub>2</sub>Se<sub>3</sub> are potential bifunctional catalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Notably, the polarization-induced semiconductor-to-metal transition enables interconversion between photo- and electrocatalysis. Non-adiabatic molecular dynamics simulation shows that TM@g-ZnO/<span><math><mrow><mo>↑</mo></mrow></math></span>-In<sub>2</sub>Se<sub>3</sub> has a long hot-carrier lifetime in photocatalysis, and conductivity calculation indicates that TM@g-ZnO/<span><math><mrow><mo>↓</mo></mrow></math></span>-In<sub>2</sub>Se<sub>3</sub> has high electrical conductivity in electrocatalysis. Furthermore, machine learning identifies the <em>d</em>-electron number of TM dopants as the dominant factor governing catalytic activity. These findings not only benefit the exploration of efficient multifunctional catalysts but also provide novel photoelectrocatalytic conversion mechanisms.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"700 ","pages":"Article 138359"},"PeriodicalIF":9.4000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photo- and electrocatalytic conversion driven by transition metal-assisted ferroelectric heterojunction\",\"authors\":\"Nan Mu ,&nbsp;Ruowen Zhang ,&nbsp;Yanyu Liu ,&nbsp;Wei Zhou\",\"doi\":\"10.1016/j.jcis.2025.138359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ferroelectric polarization switching can dynamically modulate the catalytic activity via electronic phase transitions. Herein, we systematically investigated the hydrogen evolution reaction, oxygen evolution and reduction reaction activities of heterostructures formed by stacking transition metal-doped graphene‑zinc oxide (TM@g-ZnO) and ferroelectric In<sub>2</sub>Se<sub>3</sub> monolayers using density functional theory calculations. Pt@g-ZnO/In<sub>2</sub>Se<sub>3</sub> exhibits superior hydrogen evolution reaction (HER) performance, while Ni@g-ZnO/<span><math><mrow><mo>↓</mo></mrow></math></span>-In<sub>2</sub>Se<sub>3</sub> and Pd@g-ZnO/<span><math><mrow><mo>↑</mo></mrow></math></span>-In<sub>2</sub>Se<sub>3</sub> are potential bifunctional catalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Notably, the polarization-induced semiconductor-to-metal transition enables interconversion between photo- and electrocatalysis. Non-adiabatic molecular dynamics simulation shows that TM@g-ZnO/<span><math><mrow><mo>↑</mo></mrow></math></span>-In<sub>2</sub>Se<sub>3</sub> has a long hot-carrier lifetime in photocatalysis, and conductivity calculation indicates that TM@g-ZnO/<span><math><mrow><mo>↓</mo></mrow></math></span>-In<sub>2</sub>Se<sub>3</sub> has high electrical conductivity in electrocatalysis. Furthermore, machine learning identifies the <em>d</em>-electron number of TM dopants as the dominant factor governing catalytic activity. These findings not only benefit the exploration of efficient multifunctional catalysts but also provide novel photoelectrocatalytic conversion mechanisms.</div></div>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"700 \",\"pages\":\"Article 138359\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021979725017503\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725017503","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

铁电极化开关可以通过电子相变动态调节催化活性。本文采用密度泛函理论计算方法,系统研究了掺杂过渡金属的石墨烯氧化锌(TM@g-ZnO)与铁电In2Se3单层叠加形成的异质结构的析氢反应、析氧反应和还原反应活性。Pt@g-ZnO/In2Se3表现出优异的析氢反应(HER)性能,而Ni@g-ZnO/↓-In2Se3和Pd@g-ZnO/↑-In2Se3是析氧反应(OER)和氧还原反应(ORR)的潜在双功能催化剂。值得注意的是,极化诱导的半导体到金属的转变使光催化和电催化之间的相互转换成为可能。非绝热分子动力学模拟表明TM@g-ZnO/↑-In2Se3在光催化中具有较长的热载流子寿命,电导率计算表明TM@g-ZnO/↓-In2Se3在电催化中具有较高的电导率。此外,机器学习识别出TM掺杂剂的d电子数是控制催化活性的主要因素。这些发现不仅有利于探索高效的多功能催化剂,而且提供了新的光电催化转化机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Photo- and electrocatalytic conversion driven by transition metal-assisted ferroelectric heterojunction

Photo- and electrocatalytic conversion driven by transition metal-assisted ferroelectric heterojunction
Ferroelectric polarization switching can dynamically modulate the catalytic activity via electronic phase transitions. Herein, we systematically investigated the hydrogen evolution reaction, oxygen evolution and reduction reaction activities of heterostructures formed by stacking transition metal-doped graphene‑zinc oxide (TM@g-ZnO) and ferroelectric In2Se3 monolayers using density functional theory calculations. Pt@g-ZnO/In2Se3 exhibits superior hydrogen evolution reaction (HER) performance, while Ni@g-ZnO/-In2Se3 and Pd@g-ZnO/-In2Se3 are potential bifunctional catalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Notably, the polarization-induced semiconductor-to-metal transition enables interconversion between photo- and electrocatalysis. Non-adiabatic molecular dynamics simulation shows that TM@g-ZnO/-In2Se3 has a long hot-carrier lifetime in photocatalysis, and conductivity calculation indicates that TM@g-ZnO/-In2Se3 has high electrical conductivity in electrocatalysis. Furthermore, machine learning identifies the d-electron number of TM dopants as the dominant factor governing catalytic activity. These findings not only benefit the exploration of efficient multifunctional catalysts but also provide novel photoelectrocatalytic conversion mechanisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信