Abhijit Biswas, David I. Ketcheson, Steven Roberts, Benjamin Seibold, David Shirokoff
{"title":"显式龙格-库塔方法减轻序降","authors":"Abhijit Biswas, David I. Ketcheson, Steven Roberts, Benjamin Seibold, David Shirokoff","doi":"10.1137/23m1606812","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 4, Page 1398-1426, August 2025. <br/> Abstract. Explicit Runge–Kutta (RK) methods are susceptible to a reduction in the observed order of convergence when applied to an initial boundary value problem with time-dependent boundary conditions. We study conditions on explicit RK methods that guarantee high order convergence for linear problems; we refer to these conditions as weak stage order conditions. We prove a general relationship between the method’s order, weak stage order, and number of stages. We derive explicit RK methods with high weak stage order and demonstrate, through numerical tests, that they avoid the order reduction phenomenon up to any order for linear problems and up to order three for nonlinear problems.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"21 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explicit Runge–Kutta Methods that Alleviate Order Reduction\",\"authors\":\"Abhijit Biswas, David I. Ketcheson, Steven Roberts, Benjamin Seibold, David Shirokoff\",\"doi\":\"10.1137/23m1606812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 63, Issue 4, Page 1398-1426, August 2025. <br/> Abstract. Explicit Runge–Kutta (RK) methods are susceptible to a reduction in the observed order of convergence when applied to an initial boundary value problem with time-dependent boundary conditions. We study conditions on explicit RK methods that guarantee high order convergence for linear problems; we refer to these conditions as weak stage order conditions. We prove a general relationship between the method’s order, weak stage order, and number of stages. We derive explicit RK methods with high weak stage order and demonstrate, through numerical tests, that they avoid the order reduction phenomenon up to any order for linear problems and up to order three for nonlinear problems.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1606812\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1606812","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Explicit Runge–Kutta Methods that Alleviate Order Reduction
SIAM Journal on Numerical Analysis, Volume 63, Issue 4, Page 1398-1426, August 2025. Abstract. Explicit Runge–Kutta (RK) methods are susceptible to a reduction in the observed order of convergence when applied to an initial boundary value problem with time-dependent boundary conditions. We study conditions on explicit RK methods that guarantee high order convergence for linear problems; we refer to these conditions as weak stage order conditions. We prove a general relationship between the method’s order, weak stage order, and number of stages. We derive explicit RK methods with high weak stage order and demonstrate, through numerical tests, that they avoid the order reduction phenomenon up to any order for linear problems and up to order three for nonlinear problems.
期刊介绍:
SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.