植物多酚制备非晶室温磷光材料的分子工程研究。

Guobin Yang, Yajing Zhang, Chuang Lei, Yunxiang He, Yizhen Wang, Huijing Li, Yanchao Wu, Junling Guo
{"title":"植物多酚制备非晶室温磷光材料的分子工程研究。","authors":"Guobin Yang, Yajing Zhang, Chuang Lei, Yunxiang He, Yizhen Wang, Huijing Li, Yanchao Wu, Junling Guo","doi":"10.1002/anie.202511218","DOIUrl":null,"url":null,"abstract":"<p><p>Room-temperature phosphorescent (RTP) materials have potential applications in optoelectronics and bioimaging but encounter significant challenges. Traditional heavy-metal-based and crystalline systems are often toxic and environmentally sensitive, while strategies involving host-guest doping and encapsulation frequently suffer from phase separation and limited controllability-ultimately resulting in poor repeatability and restricted applications. Here, we developed a novel polyphenol-mediated molecular splicing and ring-locking strategy to incorporate benzo[c][1,2,5]thiadiazole (BZT) into polyphenol molecules, yielding a range of eco-friendly and processable amorphous single-component systems with a lifetime of up to 124 ms. Experimental and calculational analyses confirm that phosphorescence arises from synergistic interactions between polyphenol and BZT. Furthermore, phosphorescent nanoparticles (NPs) were synthesized via nanoprecipitation in tetrahydrofuran with 30% water content. These well-dispersed, metal-free NPs demonstrate excellent biocompatibility and low cytotoxicity, facilitating time-resolved luminescence imaging with minimal background fluorescence interference both in vitro and in vivo. This research establishes a versatile and sustainable design strategy for developing high-performance amorphous RTP materials using plant polyphenols, offering promising prospects for advanced biomedical applications.</p>","PeriodicalId":520556,"journal":{"name":"Angewandte Chemie (International ed. in English)","volume":" ","pages":"e202511218"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Engineering of Plant Polyphenols Into Amorphous Room-Temperature Phosphorescent Materials.\",\"authors\":\"Guobin Yang, Yajing Zhang, Chuang Lei, Yunxiang He, Yizhen Wang, Huijing Li, Yanchao Wu, Junling Guo\",\"doi\":\"10.1002/anie.202511218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Room-temperature phosphorescent (RTP) materials have potential applications in optoelectronics and bioimaging but encounter significant challenges. Traditional heavy-metal-based and crystalline systems are often toxic and environmentally sensitive, while strategies involving host-guest doping and encapsulation frequently suffer from phase separation and limited controllability-ultimately resulting in poor repeatability and restricted applications. Here, we developed a novel polyphenol-mediated molecular splicing and ring-locking strategy to incorporate benzo[c][1,2,5]thiadiazole (BZT) into polyphenol molecules, yielding a range of eco-friendly and processable amorphous single-component systems with a lifetime of up to 124 ms. Experimental and calculational analyses confirm that phosphorescence arises from synergistic interactions between polyphenol and BZT. Furthermore, phosphorescent nanoparticles (NPs) were synthesized via nanoprecipitation in tetrahydrofuran with 30% water content. These well-dispersed, metal-free NPs demonstrate excellent biocompatibility and low cytotoxicity, facilitating time-resolved luminescence imaging with minimal background fluorescence interference both in vitro and in vivo. This research establishes a versatile and sustainable design strategy for developing high-performance amorphous RTP materials using plant polyphenols, offering promising prospects for advanced biomedical applications.</p>\",\"PeriodicalId\":520556,\"journal\":{\"name\":\"Angewandte Chemie (International ed. in English)\",\"volume\":\" \",\"pages\":\"e202511218\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie (International ed. in English)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202511218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie (International ed. in English)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/anie.202511218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

室温磷光(RTP)材料在光电子学和生物成像方面具有潜在的应用前景,但面临着重大的挑战。传统的重金属基和晶体系统通常有毒且对环境敏感,而涉及主客体掺杂和封装的策略经常遭受相分离和有限的可控性的影响,最终导致可重复性差,限制了应用。在这里,我们开发了一种新的多酚介导的分子剪接和环锁定策略,将苯并[c][1,2,5]噻二唑(BZT)纳入多酚分子中,产生一系列生态友好且可加工的非晶单组分体系,其寿命长达124 ms。实验和计算分析证实,多酚与BZT之间的协同作用产生了磷光。在水含量为30%的四氢呋喃中,通过纳米沉淀法合成了磷光纳米粒子。这些分散良好,不含金属的NPs表现出优异的生物相容性和低细胞毒性,在体外和体内都能以最小的背景荧光干扰促进时间分辨发光成像。本研究为利用植物多酚开发高性能非晶态RTP材料建立了一种通用的、可持续的设计策略,为先进的生物医学应用提供了广阔的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular Engineering of Plant Polyphenols Into Amorphous Room-Temperature Phosphorescent Materials.

Room-temperature phosphorescent (RTP) materials have potential applications in optoelectronics and bioimaging but encounter significant challenges. Traditional heavy-metal-based and crystalline systems are often toxic and environmentally sensitive, while strategies involving host-guest doping and encapsulation frequently suffer from phase separation and limited controllability-ultimately resulting in poor repeatability and restricted applications. Here, we developed a novel polyphenol-mediated molecular splicing and ring-locking strategy to incorporate benzo[c][1,2,5]thiadiazole (BZT) into polyphenol molecules, yielding a range of eco-friendly and processable amorphous single-component systems with a lifetime of up to 124 ms. Experimental and calculational analyses confirm that phosphorescence arises from synergistic interactions between polyphenol and BZT. Furthermore, phosphorescent nanoparticles (NPs) were synthesized via nanoprecipitation in tetrahydrofuran with 30% water content. These well-dispersed, metal-free NPs demonstrate excellent biocompatibility and low cytotoxicity, facilitating time-resolved luminescence imaging with minimal background fluorescence interference both in vitro and in vivo. This research establishes a versatile and sustainable design strategy for developing high-performance amorphous RTP materials using plant polyphenols, offering promising prospects for advanced biomedical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信