Qiu C Wu, Jungmin Lee, Aishwarya Swaminathan, Ashley Winward, Yung Hwang, Merav Socolovsky, Jeffrey C Way, Allon M Klein
{"title":"fc融合白细胞介素- 17a体内半衰期增加的连接子最小化和表征。","authors":"Qiu C Wu, Jungmin Lee, Aishwarya Swaminathan, Ashley Winward, Yung Hwang, Merav Socolovsky, Jeffrey C Way, Allon M Klein","doi":"10.1093/protein/gzaf009","DOIUrl":null,"url":null,"abstract":"<p><p>Interleukin-17A (IL-17A) is a cytokine involved in pro-inflammatory responses and tissue regeneration, with potential therapeutic and research applications. However, its short serum half-life limits in vivo use. Here, we report the systematic design of Fc-IL-17A fusion proteins for extended half-life. Through computational analysis of 25 design variants using AlphaFold, we found that IL-17A's native N-terminal unstructured region functions as a crucial natural linker that cannot be effectively replaced by artificial sequences. We therefore generated mouse and human Fc-IL-17A variants using direct N-terminal fusion without additional linkers. The resulting proteins retain IL-17A's ability to stimulate IL-6 production and erythroid cell growth. Pharmacokinetic analysis confirms that the Fc fusion increases the serum half-life in mice from 1.5 to 13 hours post-subcutaneous injection. This enables tractable experimental use of IL-17A in vivo for studying its role in inflammation and tissue repair. We further perform pharmacokinetics and pharmacodynamics modeling and propose a dosing regimen with reduced frequency of injection for delivering comparable IL-17A activity. This work provides a valuable pharmacological tool for injectable delivery, enabling investigation of IL-17A's biological functions in homeostasis and disease and exploration of its therapeutic potential in tissue regeneration.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linker minimization and characterization of fc-fused interleukin-17A for increased in vivo half-life.\",\"authors\":\"Qiu C Wu, Jungmin Lee, Aishwarya Swaminathan, Ashley Winward, Yung Hwang, Merav Socolovsky, Jeffrey C Way, Allon M Klein\",\"doi\":\"10.1093/protein/gzaf009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Interleukin-17A (IL-17A) is a cytokine involved in pro-inflammatory responses and tissue regeneration, with potential therapeutic and research applications. However, its short serum half-life limits in vivo use. Here, we report the systematic design of Fc-IL-17A fusion proteins for extended half-life. Through computational analysis of 25 design variants using AlphaFold, we found that IL-17A's native N-terminal unstructured region functions as a crucial natural linker that cannot be effectively replaced by artificial sequences. We therefore generated mouse and human Fc-IL-17A variants using direct N-terminal fusion without additional linkers. The resulting proteins retain IL-17A's ability to stimulate IL-6 production and erythroid cell growth. Pharmacokinetic analysis confirms that the Fc fusion increases the serum half-life in mice from 1.5 to 13 hours post-subcutaneous injection. This enables tractable experimental use of IL-17A in vivo for studying its role in inflammation and tissue repair. We further perform pharmacokinetics and pharmacodynamics modeling and propose a dosing regimen with reduced frequency of injection for delivering comparable IL-17A activity. This work provides a valuable pharmacological tool for injectable delivery, enabling investigation of IL-17A's biological functions in homeostasis and disease and exploration of its therapeutic potential in tissue regeneration.</p>\",\"PeriodicalId\":54543,\"journal\":{\"name\":\"Protein Engineering Design & Selection\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein Engineering Design & Selection\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/protein/gzaf009\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Engineering Design & Selection","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/protein/gzaf009","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Linker minimization and characterization of fc-fused interleukin-17A for increased in vivo half-life.
Interleukin-17A (IL-17A) is a cytokine involved in pro-inflammatory responses and tissue regeneration, with potential therapeutic and research applications. However, its short serum half-life limits in vivo use. Here, we report the systematic design of Fc-IL-17A fusion proteins for extended half-life. Through computational analysis of 25 design variants using AlphaFold, we found that IL-17A's native N-terminal unstructured region functions as a crucial natural linker that cannot be effectively replaced by artificial sequences. We therefore generated mouse and human Fc-IL-17A variants using direct N-terminal fusion without additional linkers. The resulting proteins retain IL-17A's ability to stimulate IL-6 production and erythroid cell growth. Pharmacokinetic analysis confirms that the Fc fusion increases the serum half-life in mice from 1.5 to 13 hours post-subcutaneous injection. This enables tractable experimental use of IL-17A in vivo for studying its role in inflammation and tissue repair. We further perform pharmacokinetics and pharmacodynamics modeling and propose a dosing regimen with reduced frequency of injection for delivering comparable IL-17A activity. This work provides a valuable pharmacological tool for injectable delivery, enabling investigation of IL-17A's biological functions in homeostasis and disease and exploration of its therapeutic potential in tissue regeneration.
期刊介绍:
Protein Engineering, Design and Selection (PEDS) publishes high-quality research papers and review articles relevant to the engineering, design and selection of proteins for use in biotechnology and therapy, and for understanding the fundamental link between protein sequence, structure, dynamics, function, and evolution.