广义幂平均曲率流的最小运动。

IF 1.2 3区 数学 Q1 MATHEMATICS
Milan Journal of Mathematics Pub Date : 2025-01-01 Epub Date: 2024-12-10 DOI:10.1007/s00032-024-00410-y
Giovanni Bellettini, Shokhrukh Yu Kholmatov
{"title":"广义幂平均曲率流的最小运动。","authors":"Giovanni Bellettini, Shokhrukh Yu Kholmatov","doi":"10.1007/s00032-024-00410-y","DOIUrl":null,"url":null,"abstract":"<p><p>Motivated by a conjecture of De Giorgi, we consider the Almgren-Taylor-Wang scheme for mean curvature flow, where the volume penalization is replaced by a term of the form <dispformula> <math> <mrow> <mtable> <mtr> <mtd> <mrow><msub><mo>∫</mo> <mrow><mi>E</mi> <mi>Δ</mi> <mi>F</mi></mrow> </msub> <mi>f</mi> <mfenced> <mstyle> <mfrac><msub><mtext>d</mtext> <mi>F</mi></msub> <mi>τ</mi></mfrac> </mstyle> </mfenced> <mspace></mspace> <mi>d</mi> <mi>x</mi></mrow> </mtd> </mtr> </mtable> </mrow> </math> </dispformula> for <math><mi>f</mi></math> ranging in a large class of strictly increasing continuous functions, where <math><mrow><mi>E</mi> <mi>Δ</mi> <mi>F</mi> <mo>=</mo> <mo>(</mo> <mi>E</mi> <mo>∪</mo> <mi>F</mi> <mo>)</mo> <mo>\\</mo> <mi>E</mi> <mo>∩</mo> <mi>F</mi></mrow> </math> is the symmetric difference between sets <i>E</i> and <i>F</i>, and <math><msub><mi>d</mi> <mi>F</mi></msub> </math> is the distance function from <math><mrow><mi>∂</mi> <mi>F</mi></mrow> </math> . In particular, our analysis covers the case <dispformula> <math> <mrow> <mtable> <mtr> <mtd><mrow><mi>f</mi> <mrow><mo>(</mo> <mi>r</mi> <mo>)</mo></mrow> <mo>=</mo> <msup><mi>r</mi> <mi>α</mi></msup> <mo>,</mo> <mspace></mspace> <mi>r</mi> <mo>≥</mo> <mn>0</mn> <mo>,</mo> <mspace></mspace> <mspace></mspace> <mi>α</mi> <mo>></mo> <mn>0</mn> <mo>,</mo></mrow> </mtd> </mtr> </mtable> </mrow> </math> </dispformula> considered by De Giorgi. We show that the generalized minimizing movement scheme converges to the geometric evolution equation <dispformula> <math> <mrow> <mtable> <mtr> <mtd><mrow><mi>f</mi> <mo>(</mo> <mi>v</mi> <mo>)</mo> <mo>=</mo> <mo>-</mo> <mi>κ</mi> <mspace></mspace> <mtext>on</mtext> <mspace></mspace> <mi>∂</mi> <mi>E</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>,</mo></mrow> </mtd> </mtr> </mtable> </mrow> </math> </dispformula> where <math><mrow><mo>{</mo> <mi>E</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>}</mo></mrow> </math> are evolving subsets of <math> <mrow> <msup><mrow><mi>R</mi></mrow> <mi>n</mi></msup> <mo>,</mo></mrow> </math> <math><mi>v</mi></math> is the normal velocity of <math><mrow><mi>∂</mi> <mi>E</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>,</mo></mrow> </math> and <math><mi>κ</mi></math> is the mean curvature of <math><mrow><mi>∂</mi> <mi>E</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo></mrow> </math> . We extend our analysis to the anisotropic setting, and in the presence of a driving force. We also show that minimizing movements coincide with the smooth classical solution as long as the latter exists. Finally, we prove that in the absence of forcing, mean convexity and convexity are preserved by the weak flow.</p>","PeriodicalId":49811,"journal":{"name":"Milan Journal of Mathematics","volume":"93 1","pages":"1-48"},"PeriodicalIF":1.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12228675/pdf/","citationCount":"0","resultStr":"{\"title\":\"Minimizing Movements for the Generalized Power Mean Curvature Flow.\",\"authors\":\"Giovanni Bellettini, Shokhrukh Yu Kholmatov\",\"doi\":\"10.1007/s00032-024-00410-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Motivated by a conjecture of De Giorgi, we consider the Almgren-Taylor-Wang scheme for mean curvature flow, where the volume penalization is replaced by a term of the form <dispformula> <math> <mrow> <mtable> <mtr> <mtd> <mrow><msub><mo>∫</mo> <mrow><mi>E</mi> <mi>Δ</mi> <mi>F</mi></mrow> </msub> <mi>f</mi> <mfenced> <mstyle> <mfrac><msub><mtext>d</mtext> <mi>F</mi></msub> <mi>τ</mi></mfrac> </mstyle> </mfenced> <mspace></mspace> <mi>d</mi> <mi>x</mi></mrow> </mtd> </mtr> </mtable> </mrow> </math> </dispformula> for <math><mi>f</mi></math> ranging in a large class of strictly increasing continuous functions, where <math><mrow><mi>E</mi> <mi>Δ</mi> <mi>F</mi> <mo>=</mo> <mo>(</mo> <mi>E</mi> <mo>∪</mo> <mi>F</mi> <mo>)</mo> <mo>\\\\</mo> <mi>E</mi> <mo>∩</mo> <mi>F</mi></mrow> </math> is the symmetric difference between sets <i>E</i> and <i>F</i>, and <math><msub><mi>d</mi> <mi>F</mi></msub> </math> is the distance function from <math><mrow><mi>∂</mi> <mi>F</mi></mrow> </math> . In particular, our analysis covers the case <dispformula> <math> <mrow> <mtable> <mtr> <mtd><mrow><mi>f</mi> <mrow><mo>(</mo> <mi>r</mi> <mo>)</mo></mrow> <mo>=</mo> <msup><mi>r</mi> <mi>α</mi></msup> <mo>,</mo> <mspace></mspace> <mi>r</mi> <mo>≥</mo> <mn>0</mn> <mo>,</mo> <mspace></mspace> <mspace></mspace> <mi>α</mi> <mo>></mo> <mn>0</mn> <mo>,</mo></mrow> </mtd> </mtr> </mtable> </mrow> </math> </dispformula> considered by De Giorgi. We show that the generalized minimizing movement scheme converges to the geometric evolution equation <dispformula> <math> <mrow> <mtable> <mtr> <mtd><mrow><mi>f</mi> <mo>(</mo> <mi>v</mi> <mo>)</mo> <mo>=</mo> <mo>-</mo> <mi>κ</mi> <mspace></mspace> <mtext>on</mtext> <mspace></mspace> <mi>∂</mi> <mi>E</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>,</mo></mrow> </mtd> </mtr> </mtable> </mrow> </math> </dispformula> where <math><mrow><mo>{</mo> <mi>E</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>}</mo></mrow> </math> are evolving subsets of <math> <mrow> <msup><mrow><mi>R</mi></mrow> <mi>n</mi></msup> <mo>,</mo></mrow> </math> <math><mi>v</mi></math> is the normal velocity of <math><mrow><mi>∂</mi> <mi>E</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>,</mo></mrow> </math> and <math><mi>κ</mi></math> is the mean curvature of <math><mrow><mi>∂</mi> <mi>E</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo></mrow> </math> . We extend our analysis to the anisotropic setting, and in the presence of a driving force. We also show that minimizing movements coincide with the smooth classical solution as long as the latter exists. Finally, we prove that in the absence of forcing, mean convexity and convexity are preserved by the weak flow.</p>\",\"PeriodicalId\":49811,\"journal\":{\"name\":\"Milan Journal of Mathematics\",\"volume\":\"93 1\",\"pages\":\"1-48\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12228675/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Milan Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00032-024-00410-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Milan Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00032-024-00410-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

De Giorgi出于一个猜想,我们考虑Almgren-Taylor-Wang方案平均曲率流,体积处罚的术语的形式取代了∫EΔF F d Fτd x F等在一个大的严格增加连续函数,EΔF = (E∪F) \ E∩F是集E和F之间的对称差分和d F是∂F的距离函数。特别地,我们的分析涵盖了De Giorgi认为的f (r) = r α, r≥0,α > 0的情况。我们证明了广义最小化运动方案收敛于∂E (t)上的几何演化方程f (v) = - κ,其中{E (t)}是R n的演化子集,v是∂E (t)的法向速度,κ是∂E (t)的平均曲率。我们将我们的分析扩展到各向异性环境,并在驱动力存在的情况下。我们还证明,只要光滑经典解存在,最小运动就与光滑经典解一致。最后,我们证明了在没有强迫的情况下,弱流保持了平均凸性和凸性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimizing Movements for the Generalized Power Mean Curvature Flow.

Motivated by a conjecture of De Giorgi, we consider the Almgren-Taylor-Wang scheme for mean curvature flow, where the volume penalization is replaced by a term of the form E Δ F f d F τ d x for f ranging in a large class of strictly increasing continuous functions, where E Δ F = ( E F ) \ E F is the symmetric difference between sets E and F, and d F is the distance function from F . In particular, our analysis covers the case f ( r ) = r α , r 0 , α > 0 , considered by De Giorgi. We show that the generalized minimizing movement scheme converges to the geometric evolution equation f ( v ) = - κ on E ( t ) , where { E ( t ) } are evolving subsets of R n , v is the normal velocity of E ( t ) , and κ is the mean curvature of E ( t ) . We extend our analysis to the anisotropic setting, and in the presence of a driving force. We also show that minimizing movements coincide with the smooth classical solution as long as the latter exists. Finally, we prove that in the absence of forcing, mean convexity and convexity are preserved by the weak flow.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
23
审稿时长
>12 weeks
期刊介绍: Milan Journal of Mathematics (MJM) publishes high quality articles from all areas of Mathematics and the Mathematical Sciences. The authors are invited to submit "articles with background", presenting a problem of current research with its history and its developments, the current state and possible future directions. The presentation should render the article of interest to a wider audience than just specialists. Many of the articles will be "invited contributions" from speakers in the "Seminario Matematico e Fisico di Milano". However, also other authors are welcome to submit articles which are in line with the "Aims and Scope" of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信