{"title":"广义幂平均曲率流的最小运动。","authors":"Giovanni Bellettini, Shokhrukh Yu Kholmatov","doi":"10.1007/s00032-024-00410-y","DOIUrl":null,"url":null,"abstract":"<p><p>Motivated by a conjecture of De Giorgi, we consider the Almgren-Taylor-Wang scheme for mean curvature flow, where the volume penalization is replaced by a term of the form <dispformula> <math> <mrow> <mtable> <mtr> <mtd> <mrow><msub><mo>∫</mo> <mrow><mi>E</mi> <mi>Δ</mi> <mi>F</mi></mrow> </msub> <mi>f</mi> <mfenced> <mstyle> <mfrac><msub><mtext>d</mtext> <mi>F</mi></msub> <mi>τ</mi></mfrac> </mstyle> </mfenced> <mspace></mspace> <mi>d</mi> <mi>x</mi></mrow> </mtd> </mtr> </mtable> </mrow> </math> </dispformula> for <math><mi>f</mi></math> ranging in a large class of strictly increasing continuous functions, where <math><mrow><mi>E</mi> <mi>Δ</mi> <mi>F</mi> <mo>=</mo> <mo>(</mo> <mi>E</mi> <mo>∪</mo> <mi>F</mi> <mo>)</mo> <mo>\\</mo> <mi>E</mi> <mo>∩</mo> <mi>F</mi></mrow> </math> is the symmetric difference between sets <i>E</i> and <i>F</i>, and <math><msub><mi>d</mi> <mi>F</mi></msub> </math> is the distance function from <math><mrow><mi>∂</mi> <mi>F</mi></mrow> </math> . In particular, our analysis covers the case <dispformula> <math> <mrow> <mtable> <mtr> <mtd><mrow><mi>f</mi> <mrow><mo>(</mo> <mi>r</mi> <mo>)</mo></mrow> <mo>=</mo> <msup><mi>r</mi> <mi>α</mi></msup> <mo>,</mo> <mspace></mspace> <mi>r</mi> <mo>≥</mo> <mn>0</mn> <mo>,</mo> <mspace></mspace> <mspace></mspace> <mi>α</mi> <mo>></mo> <mn>0</mn> <mo>,</mo></mrow> </mtd> </mtr> </mtable> </mrow> </math> </dispformula> considered by De Giorgi. We show that the generalized minimizing movement scheme converges to the geometric evolution equation <dispformula> <math> <mrow> <mtable> <mtr> <mtd><mrow><mi>f</mi> <mo>(</mo> <mi>v</mi> <mo>)</mo> <mo>=</mo> <mo>-</mo> <mi>κ</mi> <mspace></mspace> <mtext>on</mtext> <mspace></mspace> <mi>∂</mi> <mi>E</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>,</mo></mrow> </mtd> </mtr> </mtable> </mrow> </math> </dispformula> where <math><mrow><mo>{</mo> <mi>E</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>}</mo></mrow> </math> are evolving subsets of <math> <mrow> <msup><mrow><mi>R</mi></mrow> <mi>n</mi></msup> <mo>,</mo></mrow> </math> <math><mi>v</mi></math> is the normal velocity of <math><mrow><mi>∂</mi> <mi>E</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>,</mo></mrow> </math> and <math><mi>κ</mi></math> is the mean curvature of <math><mrow><mi>∂</mi> <mi>E</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo></mrow> </math> . We extend our analysis to the anisotropic setting, and in the presence of a driving force. We also show that minimizing movements coincide with the smooth classical solution as long as the latter exists. Finally, we prove that in the absence of forcing, mean convexity and convexity are preserved by the weak flow.</p>","PeriodicalId":49811,"journal":{"name":"Milan Journal of Mathematics","volume":"93 1","pages":"1-48"},"PeriodicalIF":1.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12228675/pdf/","citationCount":"0","resultStr":"{\"title\":\"Minimizing Movements for the Generalized Power Mean Curvature Flow.\",\"authors\":\"Giovanni Bellettini, Shokhrukh Yu Kholmatov\",\"doi\":\"10.1007/s00032-024-00410-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Motivated by a conjecture of De Giorgi, we consider the Almgren-Taylor-Wang scheme for mean curvature flow, where the volume penalization is replaced by a term of the form <dispformula> <math> <mrow> <mtable> <mtr> <mtd> <mrow><msub><mo>∫</mo> <mrow><mi>E</mi> <mi>Δ</mi> <mi>F</mi></mrow> </msub> <mi>f</mi> <mfenced> <mstyle> <mfrac><msub><mtext>d</mtext> <mi>F</mi></msub> <mi>τ</mi></mfrac> </mstyle> </mfenced> <mspace></mspace> <mi>d</mi> <mi>x</mi></mrow> </mtd> </mtr> </mtable> </mrow> </math> </dispformula> for <math><mi>f</mi></math> ranging in a large class of strictly increasing continuous functions, where <math><mrow><mi>E</mi> <mi>Δ</mi> <mi>F</mi> <mo>=</mo> <mo>(</mo> <mi>E</mi> <mo>∪</mo> <mi>F</mi> <mo>)</mo> <mo>\\\\</mo> <mi>E</mi> <mo>∩</mo> <mi>F</mi></mrow> </math> is the symmetric difference between sets <i>E</i> and <i>F</i>, and <math><msub><mi>d</mi> <mi>F</mi></msub> </math> is the distance function from <math><mrow><mi>∂</mi> <mi>F</mi></mrow> </math> . In particular, our analysis covers the case <dispformula> <math> <mrow> <mtable> <mtr> <mtd><mrow><mi>f</mi> <mrow><mo>(</mo> <mi>r</mi> <mo>)</mo></mrow> <mo>=</mo> <msup><mi>r</mi> <mi>α</mi></msup> <mo>,</mo> <mspace></mspace> <mi>r</mi> <mo>≥</mo> <mn>0</mn> <mo>,</mo> <mspace></mspace> <mspace></mspace> <mi>α</mi> <mo>></mo> <mn>0</mn> <mo>,</mo></mrow> </mtd> </mtr> </mtable> </mrow> </math> </dispformula> considered by De Giorgi. We show that the generalized minimizing movement scheme converges to the geometric evolution equation <dispformula> <math> <mrow> <mtable> <mtr> <mtd><mrow><mi>f</mi> <mo>(</mo> <mi>v</mi> <mo>)</mo> <mo>=</mo> <mo>-</mo> <mi>κ</mi> <mspace></mspace> <mtext>on</mtext> <mspace></mspace> <mi>∂</mi> <mi>E</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>,</mo></mrow> </mtd> </mtr> </mtable> </mrow> </math> </dispformula> where <math><mrow><mo>{</mo> <mi>E</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>}</mo></mrow> </math> are evolving subsets of <math> <mrow> <msup><mrow><mi>R</mi></mrow> <mi>n</mi></msup> <mo>,</mo></mrow> </math> <math><mi>v</mi></math> is the normal velocity of <math><mrow><mi>∂</mi> <mi>E</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>,</mo></mrow> </math> and <math><mi>κ</mi></math> is the mean curvature of <math><mrow><mi>∂</mi> <mi>E</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo></mrow> </math> . We extend our analysis to the anisotropic setting, and in the presence of a driving force. We also show that minimizing movements coincide with the smooth classical solution as long as the latter exists. Finally, we prove that in the absence of forcing, mean convexity and convexity are preserved by the weak flow.</p>\",\"PeriodicalId\":49811,\"journal\":{\"name\":\"Milan Journal of Mathematics\",\"volume\":\"93 1\",\"pages\":\"1-48\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12228675/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Milan Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00032-024-00410-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Milan Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00032-024-00410-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
De Giorgi出于一个猜想,我们考虑Almgren-Taylor-Wang方案平均曲率流,体积处罚的术语的形式取代了∫EΔF F d Fτd x F等在一个大的严格增加连续函数,EΔF = (E∪F) \ E∩F是集E和F之间的对称差分和d F是∂F的距离函数。特别地,我们的分析涵盖了De Giorgi认为的f (r) = r α, r≥0,α > 0的情况。我们证明了广义最小化运动方案收敛于∂E (t)上的几何演化方程f (v) = - κ,其中{E (t)}是R n的演化子集,v是∂E (t)的法向速度,κ是∂E (t)的平均曲率。我们将我们的分析扩展到各向异性环境,并在驱动力存在的情况下。我们还证明,只要光滑经典解存在,最小运动就与光滑经典解一致。最后,我们证明了在没有强迫的情况下,弱流保持了平均凸性和凸性。
Minimizing Movements for the Generalized Power Mean Curvature Flow.
Motivated by a conjecture of De Giorgi, we consider the Almgren-Taylor-Wang scheme for mean curvature flow, where the volume penalization is replaced by a term of the form for ranging in a large class of strictly increasing continuous functions, where is the symmetric difference between sets E and F, and is the distance function from . In particular, our analysis covers the case considered by De Giorgi. We show that the generalized minimizing movement scheme converges to the geometric evolution equation where are evolving subsets of is the normal velocity of and is the mean curvature of . We extend our analysis to the anisotropic setting, and in the presence of a driving force. We also show that minimizing movements coincide with the smooth classical solution as long as the latter exists. Finally, we prove that in the absence of forcing, mean convexity and convexity are preserved by the weak flow.
期刊介绍:
Milan Journal of Mathematics (MJM) publishes high quality articles from all areas of Mathematics and the Mathematical Sciences. The authors are invited to submit "articles with background", presenting a problem of current research with its history and its developments, the current state and possible future directions. The presentation should render the article of interest to a wider audience than just specialists.
Many of the articles will be "invited contributions" from speakers in the "Seminario Matematico e Fisico di Milano". However, also other authors are welcome to submit articles which are in line with the "Aims and Scope" of the journal.