{"title":"[CRISPR/Cas9技术在嵌合抗原受体T细胞治疗血液恶性肿瘤中的应用策略研究进展]。","authors":"Y W Wang, Y M Tang","doi":"10.3760/cma.j.cn121090-20240911-00343","DOIUrl":null,"url":null,"abstract":"<p><p>Chimeric antigen receptor (CAR) T-cell therapy has achieved breakthroughs in treating relapsed/refractory B-cell malignancies. However, it still faces challenges, including complex manufacturing processes, limited indications, T-cell exhaustion, and insufficient durability of therapeutic efficacy. CRISPR/Cas9, a highly efficient and relatively simple gene-editing technology, offers new avenues for overcoming these limitations. This review briefly outlines the working mechanism of CRISPR/Cas9 and focuses on its recent applications and clinical practices in developing universal CAR T-cells, enhancing T-cell function, and extending CAR T-cell therapy to T-cell and myeloid leukemias. Furthermore, this review highlights optimization strategies developed over the past two years to enhance the editing precision, delivery efficiency, and safety of the CRISPR/Cas9 system, aiming to provide insights for the optimal design and clinical application of CAR T-cell therapy.</p>","PeriodicalId":24016,"journal":{"name":"Zhonghua xue ye xue za zhi = Zhonghua xueyexue zazhi","volume":"46 5","pages":"481-488"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12268297/pdf/","citationCount":"0","resultStr":"{\"title\":\"[Advances in the application strategies of CRISPR/Cas9 technology in chimeric antigen receptor T cell therapy for hematological malignancies].\",\"authors\":\"Y W Wang, Y M Tang\",\"doi\":\"10.3760/cma.j.cn121090-20240911-00343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chimeric antigen receptor (CAR) T-cell therapy has achieved breakthroughs in treating relapsed/refractory B-cell malignancies. However, it still faces challenges, including complex manufacturing processes, limited indications, T-cell exhaustion, and insufficient durability of therapeutic efficacy. CRISPR/Cas9, a highly efficient and relatively simple gene-editing technology, offers new avenues for overcoming these limitations. This review briefly outlines the working mechanism of CRISPR/Cas9 and focuses on its recent applications and clinical practices in developing universal CAR T-cells, enhancing T-cell function, and extending CAR T-cell therapy to T-cell and myeloid leukemias. Furthermore, this review highlights optimization strategies developed over the past two years to enhance the editing precision, delivery efficiency, and safety of the CRISPR/Cas9 system, aiming to provide insights for the optimal design and clinical application of CAR T-cell therapy.</p>\",\"PeriodicalId\":24016,\"journal\":{\"name\":\"Zhonghua xue ye xue za zhi = Zhonghua xueyexue zazhi\",\"volume\":\"46 5\",\"pages\":\"481-488\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12268297/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zhonghua xue ye xue za zhi = Zhonghua xueyexue zazhi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3760/cma.j.cn121090-20240911-00343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhonghua xue ye xue za zhi = Zhonghua xueyexue zazhi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3760/cma.j.cn121090-20240911-00343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
[Advances in the application strategies of CRISPR/Cas9 technology in chimeric antigen receptor T cell therapy for hematological malignancies].
Chimeric antigen receptor (CAR) T-cell therapy has achieved breakthroughs in treating relapsed/refractory B-cell malignancies. However, it still faces challenges, including complex manufacturing processes, limited indications, T-cell exhaustion, and insufficient durability of therapeutic efficacy. CRISPR/Cas9, a highly efficient and relatively simple gene-editing technology, offers new avenues for overcoming these limitations. This review briefly outlines the working mechanism of CRISPR/Cas9 and focuses on its recent applications and clinical practices in developing universal CAR T-cells, enhancing T-cell function, and extending CAR T-cell therapy to T-cell and myeloid leukemias. Furthermore, this review highlights optimization strategies developed over the past two years to enhance the editing precision, delivery efficiency, and safety of the CRISPR/Cas9 system, aiming to provide insights for the optimal design and clinical application of CAR T-cell therapy.