Claudie Carron, Sarah Danché, Valdir Gomes Neto, Mickaël Lelek, Nana Kadidia Maiga, Isabelle Léger-Silvestre, Thomas Mangeat, Stéphanie Balor, Carla C Oliveira, Christophe Zimmer, Frédéric Beckouët, Christian Rouvière, Benjamin Albert, Sylvain Cantaloube, Olivier Gadal
{"title":"酵母核仁染色质的多尺度可视化。","authors":"Claudie Carron, Sarah Danché, Valdir Gomes Neto, Mickaël Lelek, Nana Kadidia Maiga, Isabelle Léger-Silvestre, Thomas Mangeat, Stéphanie Balor, Carla C Oliveira, Christophe Zimmer, Frédéric Beckouët, Christian Rouvière, Benjamin Albert, Sylvain Cantaloube, Olivier Gadal","doi":"10.1016/j.jsb.2025.108228","DOIUrl":null,"url":null,"abstract":"<p><p>Spatial organization of chromosomes is crucial for genome stability, transcription, and proper mitotic segregation. By employing a range of imaging technologies, including random illumination microscopy and single molecule localization microscopy (SMLM), we conducted an in-depth exploration of the chromatin organization in budding yeast, with optical resolutions ranging from 250 nm to 50 nm. In silico models based on passively moving polymer chains and local tethering to nuclear landmarks explained much of the experimental data in yeast chromatin. We compared these models with our new imaging data of the nucleoplasmic and nucleolar chromatin. Chromatin fibers observed in the nucleoplasm showed some similarity with model prediction with a resolution of 150 nm. However, we visualized local clustering of chromatin in both the nucleoplasm and nucleolus, rather than the tube-like appearance predicted by polymer chain models. In the nucleolus, local clustering of ribosomal DNA (rDNA) chromatin is consistently observed from 150 nm resolution down to 50 nm. We also observed that actively transcribed rDNA spatially segregates from bulk nucleolar chromatin. Using correlative light and electron microscopy (CLEM), we found that local rDNA clustering is forming a specific nucleolar subdomain visible in transmission electron microscopy, the yeast equivalent of metazoan fibrillar center. We conclude that nucleolar chromatin forms a distinct sub-nucleolar compartment in yeast, supporting the model of a tripartite structural organization of the yeast nucleolus.</p>","PeriodicalId":17074,"journal":{"name":"Journal of structural biology","volume":" ","pages":"108228"},"PeriodicalIF":3.0000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale visualization of nucleolar chromatin in yeast Saccharomyces cerevisiae.\",\"authors\":\"Claudie Carron, Sarah Danché, Valdir Gomes Neto, Mickaël Lelek, Nana Kadidia Maiga, Isabelle Léger-Silvestre, Thomas Mangeat, Stéphanie Balor, Carla C Oliveira, Christophe Zimmer, Frédéric Beckouët, Christian Rouvière, Benjamin Albert, Sylvain Cantaloube, Olivier Gadal\",\"doi\":\"10.1016/j.jsb.2025.108228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spatial organization of chromosomes is crucial for genome stability, transcription, and proper mitotic segregation. By employing a range of imaging technologies, including random illumination microscopy and single molecule localization microscopy (SMLM), we conducted an in-depth exploration of the chromatin organization in budding yeast, with optical resolutions ranging from 250 nm to 50 nm. In silico models based on passively moving polymer chains and local tethering to nuclear landmarks explained much of the experimental data in yeast chromatin. We compared these models with our new imaging data of the nucleoplasmic and nucleolar chromatin. Chromatin fibers observed in the nucleoplasm showed some similarity with model prediction with a resolution of 150 nm. However, we visualized local clustering of chromatin in both the nucleoplasm and nucleolus, rather than the tube-like appearance predicted by polymer chain models. In the nucleolus, local clustering of ribosomal DNA (rDNA) chromatin is consistently observed from 150 nm resolution down to 50 nm. We also observed that actively transcribed rDNA spatially segregates from bulk nucleolar chromatin. Using correlative light and electron microscopy (CLEM), we found that local rDNA clustering is forming a specific nucleolar subdomain visible in transmission electron microscopy, the yeast equivalent of metazoan fibrillar center. We conclude that nucleolar chromatin forms a distinct sub-nucleolar compartment in yeast, supporting the model of a tripartite structural organization of the yeast nucleolus.</p>\",\"PeriodicalId\":17074,\"journal\":{\"name\":\"Journal of structural biology\",\"volume\":\" \",\"pages\":\"108228\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of structural biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jsb.2025.108228\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of structural biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jsb.2025.108228","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Multiscale visualization of nucleolar chromatin in yeast Saccharomyces cerevisiae.
Spatial organization of chromosomes is crucial for genome stability, transcription, and proper mitotic segregation. By employing a range of imaging technologies, including random illumination microscopy and single molecule localization microscopy (SMLM), we conducted an in-depth exploration of the chromatin organization in budding yeast, with optical resolutions ranging from 250 nm to 50 nm. In silico models based on passively moving polymer chains and local tethering to nuclear landmarks explained much of the experimental data in yeast chromatin. We compared these models with our new imaging data of the nucleoplasmic and nucleolar chromatin. Chromatin fibers observed in the nucleoplasm showed some similarity with model prediction with a resolution of 150 nm. However, we visualized local clustering of chromatin in both the nucleoplasm and nucleolus, rather than the tube-like appearance predicted by polymer chain models. In the nucleolus, local clustering of ribosomal DNA (rDNA) chromatin is consistently observed from 150 nm resolution down to 50 nm. We also observed that actively transcribed rDNA spatially segregates from bulk nucleolar chromatin. Using correlative light and electron microscopy (CLEM), we found that local rDNA clustering is forming a specific nucleolar subdomain visible in transmission electron microscopy, the yeast equivalent of metazoan fibrillar center. We conclude that nucleolar chromatin forms a distinct sub-nucleolar compartment in yeast, supporting the model of a tripartite structural organization of the yeast nucleolus.
期刊介绍:
Journal of Structural Biology (JSB) has an open access mirror journal, the Journal of Structural Biology: X (JSBX), sharing the same aims and scope, editorial team, submission system and rigorous peer review. Since both journals share the same editorial system, you may submit your manuscript via either journal homepage. You will be prompted during submission (and revision) to choose in which to publish your article. The editors and reviewers are not aware of the choice you made until the article has been published online. JSB and JSBX publish papers dealing with the structural analysis of living material at every level of organization by all methods that lead to an understanding of biological function in terms of molecular and supermolecular structure.
Techniques covered include:
• Light microscopy including confocal microscopy
• All types of electron microscopy
• X-ray diffraction
• Nuclear magnetic resonance
• Scanning force microscopy, scanning probe microscopy, and tunneling microscopy
• Digital image processing
• Computational insights into structure