SeuratExtend:通过集成和直观的框架简化单细胞RNA-seq分析。

IF 11.8 2区 生物学 Q1 MULTIDISCIPLINARY SCIENCES
Yichao Hua, Linqian Weng, Fang Zhao, Florian Rambow
{"title":"SeuratExtend:通过集成和直观的框架简化单细胞RNA-seq分析。","authors":"Yichao Hua, Linqian Weng, Fang Zhao, Florian Rambow","doi":"10.1093/gigascience/giaf076","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell RNA sequencing (scRNA-seq) has revolutionized the study of cellular heterogeneity, but the rapid expansion of analytical tools has proven to be both a blessing and a curse, presenting researchers with significant challenges. Here, we present SeuratExtend, a comprehensive R package built upon the widely adopted Seurat framework, which streamlines scRNA-seq data analysis by strategically integrating essential tools and databases. SeuratExtend offers a user-friendly and intuitive interface for performing a wide range of analyses, including functional enrichment, trajectory inference, gene regulatory network reconstruction, and denoising. The package integrates multiple databases, such as Gene Ontology and Reactome, and incorporates popular Python tools like scVelo, Palantir, and SCENIC through a unified R interface. We illustrate SeuratExtend's capabilities through case studies investigating tumor-associated high-endothelial venules and autoinflammatory diseases, as well as showcase its novel applications in pathway-level analysis and cluster annotation. SeuratExtend enhances data visualization with optimized plotting functions and carefully curated color schemes, ensuring both aesthetic appeal and scientific rigor. The package's effectiveness has been demonstrated through successful workshops and training programs, establishing its value in both research and educational contexts. SeuratExtend empowers researchers to harness the full potential of scRNA-seq data, making complex analyses accessible to a wider audience. The package, along with comprehensive documentation, tutorials, and educational resources, is freely available at GitHub, providing a valuable resource for the single-cell genomics community.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"14 ","pages":""},"PeriodicalIF":11.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12236070/pdf/","citationCount":"0","resultStr":"{\"title\":\"SeuratExtend: streamlining single-cell RNA-seq analysis through an integrated and intuitive framework.\",\"authors\":\"Yichao Hua, Linqian Weng, Fang Zhao, Florian Rambow\",\"doi\":\"10.1093/gigascience/giaf076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Single-cell RNA sequencing (scRNA-seq) has revolutionized the study of cellular heterogeneity, but the rapid expansion of analytical tools has proven to be both a blessing and a curse, presenting researchers with significant challenges. Here, we present SeuratExtend, a comprehensive R package built upon the widely adopted Seurat framework, which streamlines scRNA-seq data analysis by strategically integrating essential tools and databases. SeuratExtend offers a user-friendly and intuitive interface for performing a wide range of analyses, including functional enrichment, trajectory inference, gene regulatory network reconstruction, and denoising. The package integrates multiple databases, such as Gene Ontology and Reactome, and incorporates popular Python tools like scVelo, Palantir, and SCENIC through a unified R interface. We illustrate SeuratExtend's capabilities through case studies investigating tumor-associated high-endothelial venules and autoinflammatory diseases, as well as showcase its novel applications in pathway-level analysis and cluster annotation. SeuratExtend enhances data visualization with optimized plotting functions and carefully curated color schemes, ensuring both aesthetic appeal and scientific rigor. The package's effectiveness has been demonstrated through successful workshops and training programs, establishing its value in both research and educational contexts. SeuratExtend empowers researchers to harness the full potential of scRNA-seq data, making complex analyses accessible to a wider audience. The package, along with comprehensive documentation, tutorials, and educational resources, is freely available at GitHub, providing a valuable resource for the single-cell genomics community.</p>\",\"PeriodicalId\":12581,\"journal\":{\"name\":\"GigaScience\",\"volume\":\"14 \",\"pages\":\"\"},\"PeriodicalIF\":11.8000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12236070/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GigaScience\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/gigascience/giaf076\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giaf076","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

单细胞RNA测序(scRNA-seq)已经彻底改变了细胞异质性的研究,但分析工具的快速扩展已被证明是福也是祸,给研究人员带来了重大挑战。在这里,我们介绍了SeuratExtend,一个基于广泛采用的Seurat框架的综合R包,它通过战略性地集成必要的工具和数据库来简化scRNA-seq数据分析。SeuratExtend提供了一个用户友好和直观的界面,用于执行广泛的分析,包括功能富集,轨迹推断,基因调控网络重建和去噪。该软件包集成了多个数据库,如Gene Ontology和Reactome,并通过统一的R接口集成了流行的Python工具,如scVelo, Palantir和SCENIC。我们通过研究肿瘤相关的高内皮小静脉和自身炎症性疾病的案例研究来说明SeuratExtend的能力,并展示其在途径水平分析和聚类注释中的新应用。SeuratExtend通过优化的绘图功能和精心策划的配色方案增强了数据可视化,确保了美学吸引力和科学严谨性。该方案的有效性已通过成功的研讨会和培训项目得到证明,确立了其在研究和教育方面的价值。SeuratExtend使研究人员能够利用scRNA-seq数据的全部潜力,使更广泛的受众可以访问复杂的分析。该软件包以及全面的文档、教程和教育资源都可以在GitHub上免费获得,为单细胞基因组学社区提供了宝贵的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SeuratExtend: streamlining single-cell RNA-seq analysis through an integrated and intuitive framework.

Single-cell RNA sequencing (scRNA-seq) has revolutionized the study of cellular heterogeneity, but the rapid expansion of analytical tools has proven to be both a blessing and a curse, presenting researchers with significant challenges. Here, we present SeuratExtend, a comprehensive R package built upon the widely adopted Seurat framework, which streamlines scRNA-seq data analysis by strategically integrating essential tools and databases. SeuratExtend offers a user-friendly and intuitive interface for performing a wide range of analyses, including functional enrichment, trajectory inference, gene regulatory network reconstruction, and denoising. The package integrates multiple databases, such as Gene Ontology and Reactome, and incorporates popular Python tools like scVelo, Palantir, and SCENIC through a unified R interface. We illustrate SeuratExtend's capabilities through case studies investigating tumor-associated high-endothelial venules and autoinflammatory diseases, as well as showcase its novel applications in pathway-level analysis and cluster annotation. SeuratExtend enhances data visualization with optimized plotting functions and carefully curated color schemes, ensuring both aesthetic appeal and scientific rigor. The package's effectiveness has been demonstrated through successful workshops and training programs, establishing its value in both research and educational contexts. SeuratExtend empowers researchers to harness the full potential of scRNA-seq data, making complex analyses accessible to a wider audience. The package, along with comprehensive documentation, tutorials, and educational resources, is freely available at GitHub, providing a valuable resource for the single-cell genomics community.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
GigaScience
GigaScience MULTIDISCIPLINARY SCIENCES-
CiteScore
15.50
自引率
1.10%
发文量
119
审稿时长
1 weeks
期刊介绍: GigaScience seeks to transform data dissemination and utilization in the life and biomedical sciences. As an online open-access open-data journal, it specializes in publishing "big-data" studies encompassing various fields. Its scope includes not only "omic" type data and the fields of high-throughput biology currently serviced by large public repositories, but also the growing range of more difficult-to-access data, such as imaging, neuroscience, ecology, cohort data, systems biology and other new types of large-scale shareable data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信