利用动物模型发现急性辐射综合征新对策的新机遇和当前挑战。

IF 6 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Vijay K Singh, Thomas M Seed
{"title":"利用动物模型发现急性辐射综合征新对策的新机遇和当前挑战。","authors":"Vijay K Singh, Thomas M Seed","doi":"10.1080/17460441.2025.2528966","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The availability of well-characterized small and large animal models is critical for the discovery and development of new drugs that counter the negative health effects of unwanted, acute ionizing radiation exposures.</p><p><strong>Area covered: </strong>This article discusses the opportunities and challenges of small and large animal models for the development and regulatory approval of novel drugs for acute radiation syndrome (ARS). Various animal models of ARS have been analyzed for both strengths and weaknesses relative to the development of drugs for ARS following the Food and Drug Administration (FDA) Animal Rule. This article is based on a search of literature utilizing PubMed, covering the period up to March 2025.</p><p><strong>Expert opinion: </strong>Relative to large animal models, the rhesus macaque model is currently the most used and best characterized for translational relevance. Other large animal models (e.g. minipig) are currently used as well to evaluate other specific types of acute injury, such as cutaneous injuries. Due to the limited supply of rhesus macaques for studying radiation injury and countermeasure development, it is of some urgency to further characterize and consider the use of alternative models, especially large animal models, for advanced research and subsequent regulatory approval of ARS countering drugs.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"1-16"},"PeriodicalIF":6.0000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New opportunities and current challenges using animal models for the discovery of novel countermeasures for acute radiation syndrome.\",\"authors\":\"Vijay K Singh, Thomas M Seed\",\"doi\":\"10.1080/17460441.2025.2528966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>The availability of well-characterized small and large animal models is critical for the discovery and development of new drugs that counter the negative health effects of unwanted, acute ionizing radiation exposures.</p><p><strong>Area covered: </strong>This article discusses the opportunities and challenges of small and large animal models for the development and regulatory approval of novel drugs for acute radiation syndrome (ARS). Various animal models of ARS have been analyzed for both strengths and weaknesses relative to the development of drugs for ARS following the Food and Drug Administration (FDA) Animal Rule. This article is based on a search of literature utilizing PubMed, covering the period up to March 2025.</p><p><strong>Expert opinion: </strong>Relative to large animal models, the rhesus macaque model is currently the most used and best characterized for translational relevance. Other large animal models (e.g. minipig) are currently used as well to evaluate other specific types of acute injury, such as cutaneous injuries. Due to the limited supply of rhesus macaques for studying radiation injury and countermeasure development, it is of some urgency to further characterize and consider the use of alternative models, especially large animal models, for advanced research and subsequent regulatory approval of ARS countering drugs.</p>\",\"PeriodicalId\":12267,\"journal\":{\"name\":\"Expert Opinion on Drug Discovery\",\"volume\":\" \",\"pages\":\"1-16\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Opinion on Drug Discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17460441.2025.2528966\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Drug Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17460441.2025.2528966","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

导论:具有良好特征的小型和大型动物模型的可用性对于发现和开发对抗有害的急性电离辐射照射对健康的负面影响的新药至关重要。涉及领域:本文综述了用于急性放射综合征(ARS)新药开发和监管批准的小型和大型动物模型的机遇和挑战。根据美国食品和药物管理局(FDA)动物规则,对各种ARS动物模型进行了分析,分析了与ARS药物开发相关的优缺点。这篇文章是基于对PubMed文献的搜索,涵盖到2025年3月。专家意见:有几个定义明确的ARS小动物模型,这些模型以前已经使用过,目前正在用于研究辐射损伤的性质和机制以及开发新药。相对于大型动物模型,恒河猴模型是目前使用最多、最具翻译相关性的模型。其他大型动物模型(如迷你猪)目前也用于评估其他特定类型的急性损伤,如皮肤损伤。由于用于辐射损伤研究和对策开发的恒河猴资源有限,进一步表征和考虑使用替代模型,特别是大型动物模型,用于进一步研究和后续抗辐射药物的监管批准是迫在眉睫的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New opportunities and current challenges using animal models for the discovery of novel countermeasures for acute radiation syndrome.

Introduction: The availability of well-characterized small and large animal models is critical for the discovery and development of new drugs that counter the negative health effects of unwanted, acute ionizing radiation exposures.

Area covered: This article discusses the opportunities and challenges of small and large animal models for the development and regulatory approval of novel drugs for acute radiation syndrome (ARS). Various animal models of ARS have been analyzed for both strengths and weaknesses relative to the development of drugs for ARS following the Food and Drug Administration (FDA) Animal Rule. This article is based on a search of literature utilizing PubMed, covering the period up to March 2025.

Expert opinion: Relative to large animal models, the rhesus macaque model is currently the most used and best characterized for translational relevance. Other large animal models (e.g. minipig) are currently used as well to evaluate other specific types of acute injury, such as cutaneous injuries. Due to the limited supply of rhesus macaques for studying radiation injury and countermeasure development, it is of some urgency to further characterize and consider the use of alternative models, especially large animal models, for advanced research and subsequent regulatory approval of ARS countering drugs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.20
自引率
1.60%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Expert Opinion on Drug Discovery (ISSN 1746-0441 [print], 1746-045X [electronic]) is a MEDLINE-indexed, peer-reviewed, international journal publishing review articles on novel technologies involved in the drug discovery process, leading to new leads and reduced attrition rates. Each article is structured to incorporate the author’s own expert opinion on the scope for future development. The Editors welcome: Reviews covering chemoinformatics; bioinformatics; assay development; novel screening technologies; in vitro/in vivo models; structure-based drug design; systems biology Drug Case Histories examining the steps involved in the preclinical and clinical development of a particular drug The audience consists of scientists and managers in the healthcare and pharmaceutical industry, academic pharmaceutical scientists and other closely related professionals looking to enhance the success of their drug candidates through optimisation at the preclinical level.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信