Merissa Brousseau, Da Teng, Nathan E Thomas, Gregory A Voth, Katherine A Henzler-Wildman
{"title":"多药外排泵EmrE的c端通过门控输运防止质子泄漏。","authors":"Merissa Brousseau, Da Teng, Nathan E Thomas, Gregory A Voth, Katherine A Henzler-Wildman","doi":"10.7554/eLife.105525","DOIUrl":null,"url":null,"abstract":"<p><p>The model multi-drug efflux pump from <i>Escherichia coli</i>, EmrE, can perform multiple types of transport leading to different biological outcomes, conferring resistance to some drug substrates and enhancing susceptibility to others. While transporters have traditionally been classified as antiporters, symporters, or uniporters, there is growing recognition that some transporters may exhibit mixed modalities. This raises new questions about their regulation and mechanism. Here, we show that the C-terminal tail of EmrE acts as a secondary gate, preventing proton leak in the absence of drug. Substrate binding unlocks this gate, allowing transport to proceed. Truncation of the C-terminal tail (∆107-EmrE) leads to altered pH regulation of alternating access, an important kinetic step in the transport cycle, as measured by NMR. ∆107-EmrE has increased proton leak in proteoliposomes, and bacteria expressing this mutant have reduced growth. Molecular dynamics simulations of ∆107-EmrE show the formation of a water wire from the open face of the transporter to the primary binding site in the core, facilitating proton leak. In WT-EmrE, the C-terminal tail forms specific interactions that block the formation of the water wire. Together, these data strongly support the C-terminus of EmrE acting as a secondary gate that regulates access to the primary binding site.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"14 ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12234006/pdf/","citationCount":"0","resultStr":"{\"title\":\"The C-terminus of the multi-drug efflux pump EmrE prevents proton leak by gating transport.\",\"authors\":\"Merissa Brousseau, Da Teng, Nathan E Thomas, Gregory A Voth, Katherine A Henzler-Wildman\",\"doi\":\"10.7554/eLife.105525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The model multi-drug efflux pump from <i>Escherichia coli</i>, EmrE, can perform multiple types of transport leading to different biological outcomes, conferring resistance to some drug substrates and enhancing susceptibility to others. While transporters have traditionally been classified as antiporters, symporters, or uniporters, there is growing recognition that some transporters may exhibit mixed modalities. This raises new questions about their regulation and mechanism. Here, we show that the C-terminal tail of EmrE acts as a secondary gate, preventing proton leak in the absence of drug. Substrate binding unlocks this gate, allowing transport to proceed. Truncation of the C-terminal tail (∆107-EmrE) leads to altered pH regulation of alternating access, an important kinetic step in the transport cycle, as measured by NMR. ∆107-EmrE has increased proton leak in proteoliposomes, and bacteria expressing this mutant have reduced growth. Molecular dynamics simulations of ∆107-EmrE show the formation of a water wire from the open face of the transporter to the primary binding site in the core, facilitating proton leak. In WT-EmrE, the C-terminal tail forms specific interactions that block the formation of the water wire. Together, these data strongly support the C-terminus of EmrE acting as a secondary gate that regulates access to the primary binding site.</p>\",\"PeriodicalId\":11640,\"journal\":{\"name\":\"eLife\",\"volume\":\"14 \",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12234006/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eLife\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.7554/eLife.105525\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eLife","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7554/eLife.105525","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
The C-terminus of the multi-drug efflux pump EmrE prevents proton leak by gating transport.
The model multi-drug efflux pump from Escherichia coli, EmrE, can perform multiple types of transport leading to different biological outcomes, conferring resistance to some drug substrates and enhancing susceptibility to others. While transporters have traditionally been classified as antiporters, symporters, or uniporters, there is growing recognition that some transporters may exhibit mixed modalities. This raises new questions about their regulation and mechanism. Here, we show that the C-terminal tail of EmrE acts as a secondary gate, preventing proton leak in the absence of drug. Substrate binding unlocks this gate, allowing transport to proceed. Truncation of the C-terminal tail (∆107-EmrE) leads to altered pH regulation of alternating access, an important kinetic step in the transport cycle, as measured by NMR. ∆107-EmrE has increased proton leak in proteoliposomes, and bacteria expressing this mutant have reduced growth. Molecular dynamics simulations of ∆107-EmrE show the formation of a water wire from the open face of the transporter to the primary binding site in the core, facilitating proton leak. In WT-EmrE, the C-terminal tail forms specific interactions that block the formation of the water wire. Together, these data strongly support the C-terminus of EmrE acting as a secondary gate that regulates access to the primary binding site.
期刊介绍:
eLife is a distinguished, not-for-profit, peer-reviewed open access scientific journal that specializes in the fields of biomedical and life sciences. eLife is known for its selective publication process, which includes a variety of article types such as:
Research Articles: Detailed reports of original research findings.
Short Reports: Concise presentations of significant findings that do not warrant a full-length research article.
Tools and Resources: Descriptions of new tools, technologies, or resources that facilitate scientific research.
Research Advances: Brief reports on significant scientific advancements that have immediate implications for the field.
Scientific Correspondence: Short communications that comment on or provide additional information related to published articles.
Review Articles: Comprehensive overviews of a specific topic or field within the life sciences.