Jacob H Cecil, Cristina M Padilla, Austin A Lipinski, Paul Langlais, Xiangxia Luo, Andrew P Capaldi
{"title":"出芽酵母中Gtr1/2-和pib2依赖性TORC1调控的分子逻辑。","authors":"Jacob H Cecil, Cristina M Padilla, Austin A Lipinski, Paul Langlais, Xiangxia Luo, Andrew P Capaldi","doi":"10.7554/eLife.94628","DOIUrl":null,"url":null,"abstract":"<p><p>The Target of Rapamycin kinase Complex 1 (TORC1) regulates cell growth and metabolism in eukaryotes. Previous studies have shown that, in <i>Saccharomyces cerevisiae</i>, nitrogen and amino acid signals activate TORC1 via the highly conserved small GTPases, Gtr1/2, and the phosphatidylinositol 3-phosphate binding protein, Pib2. However, it was unclear if/how Gtr1/2 and Pib2 cooperate to control TORC1. Here, we report that this dual regulator system pushes TORC1 into at least three distinct signaling states: (i) a Gtr1/2 on, Pib2 on, rapid growth state in nutrient replete conditions; (ii) a Gtr1/2 inhibited, Pib2 on, adaptive/slow growth state in poor-quality growth medium; and (iii) a Gtr1/2 off, Pib2 off, quiescent state in starvation conditions. We suggest that other signaling pathways work in a similar way to drive a multilevel response via a single kinase, but the behavior has been overlooked since most studies follow signaling to a single reporter protein.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"13 ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12234008/pdf/","citationCount":"0","resultStr":"{\"title\":\"The molecular logic of Gtr1/2- and Pib2-dependent TORC1 regulation in budding yeast.\",\"authors\":\"Jacob H Cecil, Cristina M Padilla, Austin A Lipinski, Paul Langlais, Xiangxia Luo, Andrew P Capaldi\",\"doi\":\"10.7554/eLife.94628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Target of Rapamycin kinase Complex 1 (TORC1) regulates cell growth and metabolism in eukaryotes. Previous studies have shown that, in <i>Saccharomyces cerevisiae</i>, nitrogen and amino acid signals activate TORC1 via the highly conserved small GTPases, Gtr1/2, and the phosphatidylinositol 3-phosphate binding protein, Pib2. However, it was unclear if/how Gtr1/2 and Pib2 cooperate to control TORC1. Here, we report that this dual regulator system pushes TORC1 into at least three distinct signaling states: (i) a Gtr1/2 on, Pib2 on, rapid growth state in nutrient replete conditions; (ii) a Gtr1/2 inhibited, Pib2 on, adaptive/slow growth state in poor-quality growth medium; and (iii) a Gtr1/2 off, Pib2 off, quiescent state in starvation conditions. We suggest that other signaling pathways work in a similar way to drive a multilevel response via a single kinase, but the behavior has been overlooked since most studies follow signaling to a single reporter protein.</p>\",\"PeriodicalId\":11640,\"journal\":{\"name\":\"eLife\",\"volume\":\"13 \",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12234008/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eLife\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.7554/eLife.94628\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eLife","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7554/eLife.94628","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
The molecular logic of Gtr1/2- and Pib2-dependent TORC1 regulation in budding yeast.
The Target of Rapamycin kinase Complex 1 (TORC1) regulates cell growth and metabolism in eukaryotes. Previous studies have shown that, in Saccharomyces cerevisiae, nitrogen and amino acid signals activate TORC1 via the highly conserved small GTPases, Gtr1/2, and the phosphatidylinositol 3-phosphate binding protein, Pib2. However, it was unclear if/how Gtr1/2 and Pib2 cooperate to control TORC1. Here, we report that this dual regulator system pushes TORC1 into at least three distinct signaling states: (i) a Gtr1/2 on, Pib2 on, rapid growth state in nutrient replete conditions; (ii) a Gtr1/2 inhibited, Pib2 on, adaptive/slow growth state in poor-quality growth medium; and (iii) a Gtr1/2 off, Pib2 off, quiescent state in starvation conditions. We suggest that other signaling pathways work in a similar way to drive a multilevel response via a single kinase, but the behavior has been overlooked since most studies follow signaling to a single reporter protein.
期刊介绍:
eLife is a distinguished, not-for-profit, peer-reviewed open access scientific journal that specializes in the fields of biomedical and life sciences. eLife is known for its selective publication process, which includes a variety of article types such as:
Research Articles: Detailed reports of original research findings.
Short Reports: Concise presentations of significant findings that do not warrant a full-length research article.
Tools and Resources: Descriptions of new tools, technologies, or resources that facilitate scientific research.
Research Advances: Brief reports on significant scientific advancements that have immediate implications for the field.
Scientific Correspondence: Short communications that comment on or provide additional information related to published articles.
Review Articles: Comprehensive overviews of a specific topic or field within the life sciences.